5.15.1. minimizer.auto

eminus.minimizer.auto(scf, Nit, cost=scf_step, grad=get_grad, condition=check_convergence, betat=3e-5, cgform=1)[source]

Automatic preconditioned conjugate-gradient minimization algorithm.

This function chooses an sd step over the pccg step if the energy goes up.

Parameters:
  • scf – SCF object.

  • Nit – Maximum number of SCF steps.

Keyword Arguments:
  • cost – Function that will run every SCF step.

  • grad – Function that calculates the respective gradient.

  • condition – Function to check and log the convergence condition.

  • betat – Step size.

  • cgform – Conjugate gradient form.

Returns:

Total energies per SCF cycle.