5.15.12. minimizer.sd¶
- eminus.minimizer.sd(scf, Nit, cost=scf_step, grad=get_grad, condition=check_convergence, betat=3e-5, **kwargs)[source]¶
Steepest descent minimization algorithm.
- Parameters:
scf – SCF object.
Nit – Maximum number of SCF steps.
- Keyword Arguments:
cost – Function that will run every SCF step.
grad – Function that calculates the respective gradient.
condition – Function to check and log the convergence condition.
betat – Step size.
**kwargs – Throwaway arguments.
- Returns:
Total energies per SCF cycle.