{ "cells": [ { "cell_type": "markdown", "id": "f8a89516-a98c-4586-a33c-28fa63e399f7", "metadata": {}, "source": [ "\n", "# Wannier localization" ] }, { "cell_type": "code", "execution_count": 1, "id": "3cd6e4e0", "metadata": {}, "outputs": [], "source": [ "import pathlib\n", "\n", "from eminus import Atoms, read, SCF\n", "from eminus import backend as xp\n", "from eminus.extras import view\n", "from eminus.localizer import get_wannier, wannier_cost\n", "from eminus.orbitals import FLO, SCDM, WO\n", "from eminus.tools import orbital_center" ] }, { "cell_type": "code", "execution_count": 2, "id": "56855ec6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "XYZ file comment: \"Experimental geometry from CCCBDB: https://cccbdb.nist.gov/exp2x.asp?casno=74828&charge=0\"\n", "Start auto minimization...\n", "Method Iteration Etot [Eh] dEtot [Eh] |Gradient| \n", "pccg 1 +18.061427 \n", "pccg 2 +7.881450 -1.0180e+01 [+1.05e+04] \n", "pccg 3 +0.099586 -7.7819e+00 [+1.87e+03] \n", "pccg 4 -4.096798 -4.1964e+00 [+3.10e+02] \n", "pccg 5 -6.145812 -2.0490e+00 [+5.75e+01] \n", "pccg 6 -6.874551 -7.2874e-01 [+1.02e+01] \n", "pccg 7 -7.285784 -4.1123e-01 [+2.95e+00] \n", "pccg 8 -7.577908 -2.9212e-01 [+3.02e+00] \n", "pccg 9 -7.787117 -2.0921e-01 [+1.35e+00] \n", "pccg 10 -7.857628 -7.0510e-02 [+2.89e-01] \n", "pccg 11 -7.875693 -1.8065e-02 [+6.94e-02] \n", "pccg 12 -7.879606 -3.9137e-03 [+1.64e-02] \n", "pccg 13 -7.880591 -9.8423e-04 [+4.26e-03] \n", "pccg 14 -7.880813 -2.2256e-04 [+9.53e-04] \n", "pccg 15 -7.880863 -4.9429e-05 [+2.08e-04] \n", "pccg 16 -7.880875 -1.2336e-05 [+5.59e-05] \n", "pccg 17 -7.880877 -2.2595e-06 [+1.01e-05] \n", "pccg 18 -7.880878 -5.3147e-07 [+2.19e-06] \n", "pccg 19 -7.880878 -1.4534e-07 [+6.02e-07] \n", "pccg 20 -7.880878 -3.6440e-08 [+1.55e-07] \n", "SCF converged after 20 iterations.\n", "Total SCF time: 4.86548 s\n", "Etot = -7.880877999 Eh\n", "WARNING: Executing %s took %.3f seconds\n" ] } ], "source": [ "# Run an initial calculation for methane\n", "atoms = Atoms(*read(\"CH4.xyz\"), ecut=15, center=True)\n", "scf = SCF(atoms)\n", "scf.run();" ] }, { "cell_type": "code", "execution_count": 3, "id": "020cf835", "metadata": {}, "outputs": [], "source": [ "# Calculate the SCDMs to have pre-localized orbitals\n", "scdm = SCDM(scf)" ] }, { "cell_type": "code", "execution_count": 4, "id": "47504e58", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wannier localizer converged after 15 iterations.\n" ] } ], "source": [ "# Do the Wannier localization\n", "# The resulting orbitals are equivalent to Foster-Boys orbitals, but with periodic boundary conditions\n", "wannier = get_wannier(atoms, scdm)" ] }, { "cell_type": "code", "execution_count": 5, "id": "8f27bb24", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Costs:\n", "tensor([2.6073, 2.6631, 2.7152, 2.7639])\n", "\n", "SCDM spreads = tensor([[2.6073, 2.6631, 2.7152, 2.7639]])\n", "SCDM spread = 10.7495258170228\n" ] } ], "source": [ "# Compare the initial SCDM spreads to the Wannier spreads\n", "scdm_spreads = wannier_cost(atoms, scdm)\n", "print(f\"\\nSCDM spreads = {scdm_spreads}\")\n", "print(f\"SCDM spread = {xp.sum(scdm_spreads)}\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "a0632df3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Costs:\n", "tensor([2.6821, 2.6821, 2.6821, 2.6821])\n", "Wannier spreads = tensor([[2.6821, 2.6821, 2.6821, 2.6821]])\n", "Wannier spread = 10.72830226032869\n" ] } ], "source": [ "# The Wannier orbitals are a bit more localized, and all orbitals are evenly localized\n", "wannier_spreads = wannier_cost(atoms, wannier)\n", "print(f\"Wannier spreads = {wannier_spreads}\")\n", "print(f\"Wannier spread = {xp.sum(wannier_spreads)}\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "58a92a77", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wannier localizer converged after 15 iterations.\n", "Write CH4_WO_k0_0.cube...\n", "Write CH4_WO_k0_1.cube...\n", "Write CH4_WO_k0_2.cube...\n", "Write CH4_WO_k0_3.cube...\n" ] } ], "source": [ "# All of the above can be done with one function call, also save the orbitals\n", "WO(scf, write_cubes=True);" ] }, { "cell_type": "code", "execution_count": 8, "id": "f36fbd6b", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "01a7121dc07d4691b15801d2c2ab5f71", "version_major": 2, "version_minor": 0 }, "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/home/wangenau/Documents/eminus/.venv/lib/python3.12/site-packages/nglview/__init__.py:12: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n", " import pkg_resources\n", "/home/wangenau/Documents/eminus/.venv/lib/python3.12/site-packages/pkg_resources/__init__.py:3146: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('sphinxcontrib')`.\n", "Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages\n", " declare_namespace(pkg)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bdcfcad4603f494aa7a83c57894a7462", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(Dropdown(description='filename', options=('CH4_WO_k0_2.cube', 'CH4_WO_k0_1.cube', 'CH4_W…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Display the orbitals from the cube files\n", "view(pathlib.Path().glob(\"*.cube\"));" ] }, { "cell_type": "code", "execution_count": 9, "id": "e9bb8078", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAAAAA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "black", "size": 0.1 }, "name": "Unit cell", "showlegend": false, "type": "scatter3d", "x": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "y": { "bdata": "AAAAAAAANEAAAAAAAAA0QA==", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAAAAAAAAAAAA0QA==", "dtype": "f8" } }, { "marker": { "color": "#c7c7c7", "line": { "color": "black", "width": 2 }, "size": 7.529846067512836 }, "mode": "markers", "name": "C", "type": "scatter3d", "x": { "bdata": "AAAAAAAAJEA=", "dtype": "f8" }, "y": { "bdata": "AAAAAAAAJEA=", "dtype": "f8" }, "z": { "bdata": "AAAAAAAAJEA=", "dtype": "f8" } }, { "marker": { "color": "#ffffff", "line": { "color": "black", "width": 2 }, "size": 4.809059482145178 }, "mode": "markers", "name": "H", "type": "scatter3d", "x": { "bdata": "zXrNWzpfJkDNes1bOl8mQDOFMqTFoCFAM4UypMWgIUA=", "dtype": "f8" }, "y": { "bdata": "zXrNWzpfJkAzhTKkxaAhQM16zVs6XyZAM4UypMWgIUA=", "dtype": "f8" }, "z": { "bdata": "zXrNWzpfJkAzhTKkxaAhQDOFMqTFoCFAzXrNWzpfJkA=", "dtype": "f8" } }, { "marker": { "color": "red", "size": 3.141592653589793 }, "mode": "markers", "name": "up-FOD", "type": "scatter3d", "x": { "bdata": "tbMyq96SJUCIv/1KH20iQNGW27ngkiVARAb4DR5tIkA=", "dtype": "f8" }, "y": { "bdata": "Uz9DheqSJUCfYQ4W1JIlQGvQg5wQbSJA4QsXailtIkA=", "dtype": "f8" }, "z": { "bdata": "7Tk93dGSJUC/m5c6Em0iQPcn+kMrbSJA8yBfR+ySJUA=", "dtype": "f8" } } ], "layout": { "height": 600, "hoverlabel": { "bgcolor": "black" }, "legend": { "itemsizing": "constant", "title": { "text": "Selection" } }, "scene": { "aspectmode": "data", "xaxis": { "range": [ 0, 20 ], "title": { "text": "x [a0]" } }, "yaxis": { "range": [ 0, 20 ], "title": { "text": "y [a0]" } }, "zaxis": { "range": [ 0, 20 ], "title": { "text": "z [a0]" } } }, "template": { "data": { "scatter": [ { "type": "scatter" } ] } }, "width": 600 } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAACFAAAAJYCAYAAABPHoCsAAAgAElEQVR4XuzdC7yWVZ0v8MVFDIRAKAgaZ+gwSVgmhcnkROBoOhkERtPFRFCnsSxEpZPHJm/Z8ZhH89akaQaEOjXpCIfGjgwcIcsOjE6QDjUmk/PhM6gYEF7AG3D2f3U2s0XY+917v5fnfd/v8/nwQd3Ps561vuvZb+29fs9/9djdciQHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCJBXoIUDTx7Bs6AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkAUEKDwIBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNMLCFA0/SMAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBCg8AwQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTS8gQNH0jwAAAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQIDCM0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0vYAARdM/AgAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAQrPAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIND0AgIUTf8IAKhbgd0tPe9Rt73XcQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBRKQICiUNOhMwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAtBAQoaqHungQIECBAgAABAgQIEKiEwK6WRntWomFtFl9Aibriz5EeEiBAgAABAgQI1LuA/9dd7zOo/wQIEOhYQICiYyNnECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0uIEDR4BNseAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDHAgIUHRs5gwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGhwAQGKBp9gwyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQ6FhCg6NjIGQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECDCwhQNPgEGx4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQsYAARcdGziBAgAABAgQIECBQ5wK7W/rfo87HoPsECBAgQIAAAQIECBAgQIAAAQIECBCorIAARWV9tU6AQIMI7GoZR88GGYthECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDwWgEBCk8FAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0PQCAhRN/wgAIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAQoPAMECBAgQIAAAQIECBAgQIAAAQIECBDojsDulot7dKcB1xIgQIAAAQIEOiPg/3x0Rsu59StQiyddgKJ+nxc9J0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECXRKoRUChSx2t4kUCFFXEdisCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgmAICFMWcF70iQIAAAQIECBAgQIBAzQV2tfSgZ817oQMECBAgQIAAAQIECBAgQIAAAQIEqiMgQFEdZ3chQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECiwgQFHgydE1AgQIECBAgAABAgQIdEfAPpbd0XMtAQIECBAgQIAAAQIECBAgQIBAswkIUDTbjBsvAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0FQCwtVNNd0GS4AAAQLdEBCg6AaeSwkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHGEBCgaIx5NAoCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgGwICFN3AcykBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQGAICFI0xj0ZBgACB/xSwoaGngQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECnBQQoOk2WkrXJLqC5hAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIFFhAgKLAk6NrBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHUEBChanZWVqM4T5y4ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCAAgIUBZwUXSJAgAABAgQIECBAgAABAo0ssKtlcD0beYDGRoAAAQIECBAgQIAAAQIECNSlgABFXU6bThMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLlFBCgKKemtggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG6FBCgqMtp02kCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgnAICFOXU1BYBAgQIECBAgAABAgQIvFZgV8t/6gmGAAECBAgQIECAAAECBAgQIECAQLEFBCiKPT96R4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRBQICiCshuQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBRbQICi2PPTZL3b3TLeHk02ZsMlQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSIICFAUYRb0gQABAgQIECBAgAABAgQIECBAgEAjCHg/phFm0RgIECBAgAABAgQINK2AAEXTTr2BEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAq0CAhSeBQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDpBQQomv4RAECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgIUHgGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgaYXEKBo+kcAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQICBA4RkgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEml5AgKLpHwEABAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgACFZ4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoegEBiqZ/BAAQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECAhSeAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDpBQQomv4RAECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgIUHgGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgaYXEKBo+kcAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQICBA4RkgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEml5AgKLpHwEABAgQIECAAAECBAgQIECg6AK7WjrYs+id1D8CBAgQIECAAAECBAgQIECgzgUEKOp8AnWfAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6L6AAEX3DbVAgEAW8EaYB4EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA5QWsy1XKWICiUrLaJUCAAAECBAgQIECAAAECBKog4JdGVUB2CwIECBAgQIAAAQIECBAg0BQCAhRNMc0GSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLQnIEDh+SBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaXkCAoukfAQAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAAIVngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGh6AQGKpn8EABAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQICFJ4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoOkFBCia/hEAQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAhQeAYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEA1BHa13KRnNW7kHl0REKDoipprCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYYSEKBoqOk0GAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBVYHfLP/QokUOAokQopxEgQIAAAQIECBAgUCUBZQyrBO02BAgQIECAAAECBAgQIECAAAECBAi0FRCg8DwQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTS8gQNH0jwAAAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQIDCM0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgbAK7W1rqUbbWNESAAAEC1RMQoKietTsRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBRUQoCjoxOgWAQIECBAgQIAAAQIECBAgQIBANwV2tVzfs5ttuJxA4QS81Vy4KdEhAgQIECBAgACBhhEQoGiYqTQQAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoKsCAhRdlXMdAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAosoACZp2aHQGKTnE5mQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGhEAQGKRpxVYyJAgAABArUQsL90LdTdkwABAgQIECBAgAABAgQIECBAgAABAgQIECiTgABFmSA1Q4AAAQIECBAgQIAAAQIECBAg0GACQsINNqGGQ4AAAQIECBAgUHsB+0nUfg70oD0BAQrPBwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIND0AgIUTf8IACBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQEKDwDBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNMLCFA0/SMAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBCg8AwQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTS8gQNH0jwAAAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQIDCM0CAAAECBAgQIECAAAECBAgQIECAAAECBIoqsLulYz2K2jn9IkCAAAECBAg0loAARWPNp9EQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECXRAQoOgCmksIECBAgAABAgQIECBAgAABAgQIECBAgAABAs0poCxKc867URMgQKA5BAQommOejZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoR0CAwuNBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINL2AAEXTPwIACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQEKzwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ9AICFE3/CAAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBCg8AwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDTCwhQNP0jAIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQoPAMECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAk0vIEDR9I8AAAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAwjNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINL2AAEXTPwL1ArC7paM96qWz+kmAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdSYgQFFnE6a7BAg0qMCulnH1bNCxNcKwzE8jzKIxECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaFRCg8IAQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTS8gQNH0jwAAAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQIDCM0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpY4Mwzz0wf/OAH07Rp08o2iueeey6ddNJJ6eabb05vectbytZukRsSoCjy7OgbAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS8wL333psWLVqUNm7cmHbt2pWGDx+epkyZkv+UcpQrQPHv//7v6emnn05HHnlk2rlzZ3rkkUfS6NGj0+te97pSulH35whQ1P0UGgABAp0X2NVySc/OX+YKAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAmUWWLFiRfr617+ezjvvvPTOd74zt7569ep0/fXXp7lz56Zjjz22wzuWK0Axb9689NJLL6VorxkPAYpmnHVjJkCAAAEC5RCQRSqHojYIECBAgAABAgQIECBAgAABAgQIECBAoMkFrrnmmvTMM8+kiy+++FUSDzzwQDr44IPTmDFj8n+PChU/+MEP8rlvfvOb02mnnZbGjx+fv7Z3gKK9c3fs2JFuuOGG9NOf/jT16tUrvf/970+f+9zn0h133JH/9OjRIw0ZMiR961vfetUWHi+++GK65ZZbUvQr2njrW9+aPv/5z6c//MM/TC+88EKulnHppZem733ve2nz5s1pwIAB6fzzz6+r7T8EKJr8m9HwCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB2An//93+fbrvttnTJJZfsqUCxd29WrVqVrr766vTVr341jRo1KleouOyyy3KgIcIUbQMUHZ37N3/zN+nXv/51+tKXvpS3C7nooovSUUcdlf7yL/8yhzhGjBiR23vuuedeFaCI0MUvf/nLfM7AgQPTggUL0vLly9PChQtz6OJDH/pQeve7353bO+igg9JXvvKVvA1IhCrq5RCgqJeZ0k8CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaDiBCBlEtYclS5bkihOxjcfYsWPT+973vtS/f/883r/+679Oo0ePTqeeeuqe8V9wwQW5OkX8t7YBivbOnTFjRq4UceGFF+6pXrF+/fq0devWdOSRR+43QDFy5Mg0efLkFPeMfsURVSg+8pGP5ODHu971rhygiPDEhAkT8tf/9//+3+nv/u7v0ne+8526mTMBirqZKh0lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUYVeP7559PatWvTww8/nH72s5+l3/3udznQEOGEWbNmpf/4j/94zdA/8IEPpC9+8YuvClC0d+4ZZ5yRPvGJT6Rbb701b72x97G/ChSvf/3r83VR8SLCFK3HJz/5yfTxj388nXjiiTlA8Y1vfCMHPeJYtmxZmjdvXrr99tvrZsoEKOpmqnSUAAECBAjUm8Dulg73qLdO6y8BAgQIECBAgAABAgQIECBAgAABAgQIEKi5wO7du9MVV1yRHn/88Vyd4vTTT88VIKLiw76OthUo2jt38+bN+wxCtLbZUYDi29/+dvqjP/qjPV2IUEX8aQ1QxPYghx56aP66AEXNHyMdqCsB62p1NV06S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAeQV27dqVrr322nTcccflrTvaHosWLcrVG37wgx+kL3/5y2nQoEHpC1/4wp5TNm3alN7whjeknj17vqoCRXvn9ujRI2/hEVUr3v/+9+e2/vVf/zX927/9W/rgBz/Y7hYeH/7wh9P555+/ZwuPqJgxffr0dNlll6UjjjgiV6AQoCjv86E1AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQNAJXXnll+vnPf54+85nP5O0vIuTwq1/9Kn3zm99MRx99dJozZ05atWpVDipEhYhx48alf/mXf0kXXnhh+upXv5re8Y53vCpA0dG5N9xwQ94mJK7v1atXbvfd7353+vSnP53++3//7+mVV15J5513XvaPihc333xzestb3pJuvPHG9Mgjj6RLLrkkHXTQQSmqUcS95s+fn6JihgBF0zyyBkqAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBMovEIGF73//++n//J//k6KqRAQo3vSmN6UPfOAD6aSTTkq9e/fON7377rvTnXfembZu3ZqGDh2aTj755HT88cfnr7XdwqOjc7dv354iRPHTn/40tz1hwoT0uc99LvXp0ycHIv7H//gf+Z9j65CPfexjewIUL7zwQvrGN76RfvKTn+SqF4cddli+bvjw4emll14SoCj/o6FFAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgED1BXq0lNLYXf3buiMBAgQIEGgEgfif0B6NMBBjIECAAAECBAgQIECAAAECBAg0tsCuluH1bOwhGh0BAgQIECDQfQEBiu4baoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCXg+quynTYQIECBCosIAARYWBNU+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgUX0CAovhzpIcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAhQUEKCoMrHkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg+AICFMWfIz0kQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEai6wu6UHPWreCx0gQIAAAQIEKicgQFE5Wy0TIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCvzmN79JW7ZsSePGjavofZqhcQGKZphlYyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhhF47LHH0nnnnZfuu+++9Nxzz+0Z15FHHpkuuuiiNGXKlIYZazUHIkBRTW33IkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC3RC44YYb0tlnn51b6NOnTxoxYkTq27dv+o//+I/0zDPP5P/+qU99Kt10002pf//+3bhT810qQNF8c27EBAgQIECAAAECBNoX2NXy5Z6QCBAgQIAAAQIECBAgQIAAAQIECBAomsC9996b/vzP/zx36y/+4i9yFYq2x/33358uvvjitGPHjnT66aenW2+9tVtDWLVqVbrtttvS+vXr0+te97r0zne+M336059Ob37zm7vVblEvFqAo6szoFwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ+P8CW7duTW9729vSpk2b0uzZs9PJJ5+8T5sIO5xyyin5az/84Q/Thz70oS4Z/t//+3/T5Zdfnj772c+mP/3TP007d+5Md955Z1q6dGn6zne+kwYMGNCldot8kQBFkWdH3wgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQIvA9ddfn+bMmZP+5E/+JF1zzTXtmtx9993pyiuvTB/4wAdy4KErx5lnnpmOO+64XOmi7fGjH/0o9+Hggw/uSrOFvkaAotDTo3MECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCClM844I1d++PKXv9xhVYlnnnkmnXDCCWnw4MFp8+bNneZ7/vnn07Rp0/L2HcOGDev09fV6gQBFvc6cfhMgQIAAAQIECBAgQIAAAQIECBAg8BqB3S3/pQcXAgQIECBAgAABAg0ocNRRR6V/+qd/Srfeems67LDDOhzhlClT0m9/+9v05JNPdjoEEduEfOpTn0r/8A//kPr06dPhvRrlBAGKRplJ4yBQSYFdLY33rOQNtE2AAAECBAgQIECgGAL+r28x5kEvCBAgQIAAAQIECBAgQIAAgdcKfPjDH05LlixJV199dTr66KM7JHrve9+bz9m9O2LGnTteeOGFFAGM+fPnpze/+c2du7iOzxagqOPJ03UCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaA6Biy66KF122WXp05/+dDr99NPbHfRjjz2WZsyYkQ4//PD0i1/8oktAn/vc59L48ePTqaee+qrrFyxYkCZOnJhGjhzZpXaLfJEARZFnR98IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECLQIQi3vrWt6Z+/fqlO+64o91tOT7zmc+ktWvXpuuvvz7Nnj27S34PPfRQitDGX/7lX6Zjjjkmt3HnnXemFStWpJtvvjn3o9EOAYpGm1HjIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGGFLjgggvSFVdckf7oj/4oXXjhhentb3/7q8a5bdu2vMXHP/7jP3ar+kRro//8z/+cFi5cmMMbBxxwQHrPe96T/uqv/ioNGTKkIX0FKBpyWg2KAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBpNYPv27Tk08fjjj+ehvf/978+hhoMPPjitXr063XfffenZZ5/NX/vxj3+cJkyY0GgEFR2PAEVFeTVOgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKJ+QMtQMAACAASURBVBABiblz56Zbbrlln40eccQR6fbbb39NdYry9aBxWxKgaNy5NTICBAgQIECAAAECBJpIYFfLWHs20XgNlUBVBHa33KVHVe7kJgQIECBAgAABAgQIECBAoNMCDz30UFq5cmVas2ZNeuaZZ1IEJ6IaxeTJkzvdlgt+LyBA4UkgQIAAAQIECBAgQIAAAQIEssDvfve7/PegQYOIECBAgAABAgQIECBAgAABAgSaTkCAoumm3IAJECBAgAABAgQIECBAgMB/CsSeqb/85S/TokWL0ooVK1Lv3r3TBz/4wTRt2rT0B3/wB2nkyJG4CBAgQIAAAQIECBAgQIAAAQJNISBA0RTTbJAECBAgQIAAAQIECBAgQOA/BSIoEaGJ5cuXp9g39dBDD03Tp09Pv/jFL3IViokTJ6Zly5alhx9+OO3YsSOHKQ477LD83x0ECBAgQIAAAQIECBAgQIAAgUYVEKBo1Jk1LgIECBAgQIAAAQIECBAg8P8FIhQR+6JGaCL+3r59ew5ETJ06NY0dO3aP0/XXX5//+eyzz97z32Iv1QhcbNy4Me+pOmPGjDRmzJg0btw4W314wggQIECAAAECBAgQIECAAIGGEhCgaKjpNBgCBAgQIECAAAECBAgQIPB7gdia49FHH03z58/PoYlJkyalo48+OleR2N+2HPsKULT1jCDGggUL0rp169LmzZvTkCFD0rHHHpuOP/54YQoPHgECBAgQIECAAAECzSGwu2WYPZpjqEZZPwK/+c1v0pYtW/LLDo7uCQhQdM/P1QQIECBAgAABAgQIECBAoDACUSHiueeeS4sWLUr3339/DjeMHz8+hyYGDRrUYT87ClC0bSDCFIsXL04PPvhgWr16dZowYUL+Rc2IESNs9dGhtBMIECBAgACBjgSsT3Yk5OsECBAg0OwCjz32WDrvvPPSfffdl38X0HoceeSR6aKLLkpTpkxpdqIujV+AoktsLiJAgAABAgQIECBAgAABAsUQiO01fvazn+UqE88++2w69NBD0/Tp03PFic4enQlQ7N12bPWxbNmyHKaIfsRWH0cddZS3Xzo7Cc4nQIAAAQIECBAgQIAAAQIdCNxwww17tt983etel97ylrek/v37p/Xr1+dKFHF86lOfSjfddFP+747SBQQoSrdyJgECBAgQIECAAAECBAgQqLlAVH6IkEIEJpYvX55GjRqVDjvssFz1YezYsd3qX3cCFG1vHJUwojrFxo0b8y9vTjnllDRgwIBcEaOUShjdGoSLCRAgQIAAAQIECBAgQIBAAwvce++96c///M/zCGfPnp1af5ZvHfL/+l//K5188snp+eefT6effnq69dZbu6xxzjnnpMmTJ6fjjjtuTxvxc/7cuXNz9ctGPAQoGnFWjYkAAQIECBAgQIAAAQIEGkrg8ccfT0888USaP39+WrJkSZo2bdqerTlGjhxZtrGWK0DRtkMR+FiwYEFatWpVDlNEyCOCFFGdopx9LxuChggQIECAAAECBAgQIECAQEEFtm7dmt72trelTZs2pauuuioHGfZ1PPLII+nwww/PX/rhD3+YPvShD3VpRAIUXWJzEQECBAgQIECAAAECBAgQIFBugdia45e//GWuNBEhhOHDh+c3PqZOnVruW+1prxIBiradjXGsXbs2b/UR245E9YzYamTEiBG5goaDAAECBAgQIECgSgK7W+7To0r3qtPbIKrTidNtAg0uED+3z5kzJ1eg+NGPftTuaGP7js9+9rPpAx/4QFq6dGmXZAQousTmIgIECBAgQIAAAQIECBAgQKAcAhGWiF9qxN/bt29Po0ePzoGJCBlU46h0gGLvMaxcuTJFUOSBBx7IIZFZs2blyhQRrLDVRzVm3D0IECBAgAABAgQIECBAoJ4EzjjjjPSd73wnzZs3L/8M3d6xZcuWNGTIkDR48OC0efPmLg1TgKJLbC4iQIAAAQIECBAgQKCcAt5yKaemtggUWyC25nj00UfzvqERmojtLQ477LAcmqjF9hbVDlC0nZ2wWLx4cVq3bl3e6iNCFMcff3ze7kOYotjPsd4RIECAAAECBAgQIECAQHUE4qWDf/qnf0qrV69O73nPezq8aVR8jC1Bn3zyyTRs2LAOz9/7hAhQxM/rBxxwwJ4v7dy5M+3atSv/LqMRjx67W45GHJgxESBAgAABAgQIECBAgACBIgrELx5ia46FCxfmoMC4cePS+PHj8xYWtQhNtDWqZYCibT+iGkWEKWKrjwiYTJgwIQcpxowZU3OjIj5T+kSAAAECBAgQIECAAAECzSHw4Q9/OC1ZsiT9wz/8QzrxxBM7HHSPHr/fr6mrkYAIUBxzzDH55/LW49///d/TpZdeKkDRob4TCBAgQIAAAQIECBAgQIAAgX0KxDYV8XZI/Hn22WfT4YcfniZPnly1rTlKnZaiBCja9jfCFGvXrs2/ILr//vtTr1690owZM3KljgidOAgQIECAAAECBAgQIECAQLMIXHTRRemyyy5LX/nKV9KFF17Y7rB/8YtfpCOOOCL/DiL+uSuHLTy6ouYaAgQIECBAgAABAgQIECBA4FUCsegfW3JEpYkIT8Sif5TNnDlzZt6mI8pnDh8+vHBqRQxQtCK1mq1cuTKbbty4Ma1ZsyaHKd773vfmLT9s9VG4R0qHCBAgQIAAAQIECBAgQKCMAo899lh661vfmgYMGJD+5V/+JR1yyCH7bT2qRvzkJz9J8bP+7Nmzu9QLAYousbmIAAECBAgQIECAAAECBAgQiK05YruJ+fPn5wX+SZMmpRNOOGGfW3MIUHT+edm0aVMaOnToqy6MoMqCBQvSqlWr8nYoEU6JrT6OP/54YYrOE7uCAAECBAgQIECAAAECBOpA4IILLkhXXHFFetvb3pZ/BxHbgrY9Nm/enD7/+c+n733ve92qPhFtClDUwQOhiwQIECBAgAABAgQIECBAoCgCUQEhwhDLly/P20vE4n384iK2lmivGoIARednsCOzCFMsXrw4Pfjgg3mrlAhTRIhlzJgx+Z8dBAgQIECAAAECBAgQIECgEQS2b9+e3v72t6d4kSOOqVOnpuOOOy6/dPCP//iP6a677kpbt27NX/vxj3+cohKFo3SBHrtbjtJPdyYBAgQIECBAgAABAgQIEGhugagu8bOf/Sxv0RHbSIwePTpvzRGL9aUeHYUBSm2n3OfVwxYepY45tvpYtGhRWrduXXr22WfzVh9HHXVUGjduXKlNOI8AAQIECBAgQIAAAQIECBRSIH7OnTt3brrlllv22b8jjjgi3X777Tlo4eicgABF57ycTYAAAQIECBAgQIAAAQJNJhCVDaKiQQQnotLEqFGj9lSZ6GplAwGKzj9E+9rCo9RWolJIVKeIwEts9dEapIiKIe1VCim1fecRIECAAAECBAgQIECAAIFaCMTLHfECQfzc+8wzz6QITrznPe9JkydPrkV3GuKeAhQNMY0GQYAAAQIECBAgQIAAAQLlFIgymI8++mgue7lkyZI0bdq0PaGJkSNHdvtWsZA/YsSIbrdT7gaKXIGiXGYRiFmwYEFatmxZilBGhGAiUBFhinLMbbnnRHsECBAgQIAAAQIECBAgQIBA9QQEKKpn7U4ECBAgQIAAAQIECBAgUGCBeFtj6dKleWuOWGQ/9NBD8x6iEydOLHuVgnKFAcrN2QwBirZmMc9r167NYYqY+6guMmXKlBxuiXl3ECBAgAABAgQIECBAgAABAs0lIEDRXPNttAQIECBAgAABAgQIECDQRiDCErFwHttz9OrVK40ePTpNnTo1TZo0qaJOTz31VBo2bFhF79GVxoscoOjOFh6lWkTZ00WLFqV169blEM2sWbNydYoIVtjqo1RF5xH4vcCulj89YRAgQIAAAQIECBAgQKDOBAQo6mzCdJcAAQIECBAgQIAAAQIEui7QujVHLJJHaCK2bxg/fnwOTVRz+4YnnngiDR8+vOsDqdCVV199dTrggAPS2WefXaE7dL3ZapvFs7J48eI9W31EqKZ1qw9hiq7PoysJECBAgAABAgQIECBAgECRBQQoijw7+kaAAIEKCOxuabNHBdrVJAECBAgQIECgqAKxEL569epcWWD9+vVp3LhxOTQRWzRUMzTR1qfaYYBS5yYqULz88stp7ty5pV5StfNqaRbVKFrDFI8++mgO3kybNi2NGTOmZs9Q1eDdiAABAgQIEGgwAb8dbLAJNRwCBAgQKLOAAEWZQTVHgAABAgQIECBAgAABArUXiOoSEZqIPxs3bsxbc8ycObPiW3OUOvJqbEdRal/antfsW3iUYhZhirVr1+ZAzr333pu39pgxY0Y67LDDcijHQYAAAQIECBAgQIAAAQIEqiqwaVNq2Yvy97ccOjS1/IBa1ds32s0EKBptRo2HAAECBAg0nIDdkxtuSg2IAAECFRCIRe2HHnooLV++PG/Nccghh6QRI0bk0ERUCyjaUctqCu1ZxBYecahAUfoTs3LlyvzMRVDn/vvvz5Uppk+fnkaNGpXDFQ4CBAgQIECAAAECBAgQIFARgSefTOmii1K65ZZXN9+yBWW6/PKU3vveity20RsVoGj0GTY+AgQIECBAgAABAgQINKhAbM0R2ylEJYD4M6nlFwQnnHBCTbfmKJW6qAGKIlegKKpZ2zmPZ7J1q48dO3bkEMWxxx6bjj/+eGGKUr85nEeAAAECBAgQIECAAAECHQu0/PyZjj46pSee2P+53/teSh//eMdtVfiMefPmpTvuuCP17NnzVXf60pe+lH+H8+yzz6Y456c//Wl65pln0rBhw/LP0Z/4xCf2XHPOOeekX/3qV/nf409syfqRj3wk/dmf/VnZey9AUXZSDRIgQIAAAQIECBAgQIBApQTWrFmTQxNRaSLe9o/F6SOPPDK9733vy4vV9XJs3rw5DRw4MPXu3btQXY4KFAcccEA6++yzC9WvV155JW3bti0NGTKkUP1qrzPxnP7sZz9LDz74YH5e4/k8+eST05gxYwpZFaVuYHWUAAECBAgQIECAAAECBFIaPz617FvavkS/fin9/OcpHXpoTcUiHLFly5Z9Vrt8+eWX8+8g4uf9M844I73pTW9K69evT/GCx6Et/f7CF76Q+x4BismTJ6fjjjsuPf/88y3D+nn6xje+kUMUH/vYx8o6PgGKsnJqjAABAgQIECBAgAABAgTKLRDbI8RCdPwdbyWMHj06b80RFSdaj00t+30OjX0+6+SIAEX//v3TgQceWKgexy8o4pcXRdvC48UXX0zPPfdcXQUo9q6YEVt9RKWUdS370sZzHFt9RABo3LhxhXoGdIYAAQIECBAgQIAAAQIECi5w220pzZhRWidbtphMd95Z2rn7OOvEE09Mt7Xcb/Dgwfmrrf8eLwr8+te/Ti+99FJ6+umnU58+fVJUlHjjG9/4mlbaC1AsW7YsV5+YP39+fqGj9XiyZXuS008/Pd10003pD//wD18VoGg9Z+3atenLX/5y+l5LpY2DDjqoy2Pc+0IBirJRaogAAQIECBAgQIAAAQIEyiHwu9/9bs/WHAsXLsxv68cbBlHWMf55X8fGjRvTiBEjynH7qrQRY+zbt2/hAhRRgSIOAYruPwbtPZNRSSW2+ojqFBH+aQ1SxN+DBg3q/s21QIAAAQIECBAgQIAAAQKNK9ASyG/5obL08W3fnlp+CVH6+W3O3F+AIl5yid/ZRPghfo698cYbU2xled55573mPu0FKL7+9a/n8MXnP//511wXbcXLMx/+8If3GaCIC/7iL/4iBzfe9a53dWl8+7pIgKJslBoiQIAAAQIECBAgQIAAga4KPN6yd+dDDz2U7rrrrlxpIt7OH99SjjJCE7GvZUfH3m/7d3R+rb8eFQjiGDBgQK278qr7FzVAsb3llz07d+4snFd7k1fqMxlhmgULFqR46ybCFLHVRwQppre8JSRMUahvD50hQIAAAQIECBAgQIBAMQTi5ZKW6gslH7/5TWr55UrJp7c9sb0ARbwc8JWvfCWfHltq/M3f/E369re//Zr7RIDizpYqGP1iS5E2xxVXXJFuv/32/HPwpz71qddc99WvfjX/TuiUU07Zb4DiM5/5TP56bO1arkOAolyS2iFAgAABAgQIECBAgACBTgnED9pLly7NwYkNGzbkrTkiOBGhic4uHJe6WN2pDlbw5CIHKKJkZuw/WqSjqF7tGXXlmYwwRZQgjdKlq1atyhVXpkyZkqurxPeFgwABAgQIECBAgAABAgQIpD/5k9TyQ2PpEE88kdKb3lT6+W3ObC9A8dhjj6UvfvGL+ex//dd/TRdffHHeTuMTn/hE3tojKkvEv0eAIrbkOPPMM1/Vh4EDB+bQxe7du9OcOXNe07+oQHHMMcfkn4vPOeecNHny5FyhtO0RFSguueSS9Pa3v71L49vXRQIUZaPUEAECBAgQIECAAAECBAh0JNC2ykScG1Umpk6dmksydufoymJ1d+7X3WuLWlGhqBUoIkDRq1ev17yt0t15qOT15XgmV65cmRYtWpTWrVuXQ0ZRlSJCRvF2TmdDRpUcq7YJECBAgAABAgQIECBAoIoC/+2/pfS1r5V2w//yX1JqCTqkHj1KO3+vsyK0EFUThwwZkl5++eUUgYrvf//7uXroP//zP6eoEhFHbFF588035z9bt27NoYgeLfc8+OCDc4Biy5Yt+9wu9P7770/f+MY30ne/+91XbXMaFRpnzZqVbrnllvTmN795nwGK+B1T3P8HP/hB6t27d5fGt6+LBCjKRqkhAgQIECBAgAABAgQIENhbILbmePTRR/MicPxwHW/Ut4YmStmao1TRzZs3p/79+7/qh+1Sr63FeS+++GJ67rnn8i8ginRcf/31+Rcic+fOLVK3kvlNKb6XFrfscRvfSxHAidDRUUcdlbf7EKYo1OOqMwQIECBAgAABAgQIEKisQMvPh2nMmJReeKHj+9x4Y0ot21x09YgQQ1SpfPe73523nrzyyitzVYn4HU+EHm666aaW4hZvSvFCRlScmD179mtu1V6AYteuXTkcEdt7fPazn03Dhw9P//Zv/5auu+66liGO2VMhs20FildeeSVvGXLVVVelU089NX3oQx/q6vD2eZ0ARVk5NUaAAAECBIoqsKulYz2L2jn9IkCAAIEGE4iF3uXLl+eF3vXr16dx48blEouxBUE5QxNt2epti4eiBiiKWoGi3gIUEXCIcqWVCjbEVh8RpohfXrUGk84666z8y6VKfY812MeU4RAgQIAAAQIECBAgQKC+Ba64IqULLmh/DC2B+5a9U1uWBrq+NhCVEW+99dY0dOjQ/ELMnXfembfd+PGPf5yrJb7QEuKI3wMNGzYs/fVf/3UaPHjwa/rUXoAiTo6foeOcqEbxzDPP5HtFpYuPfvSjLV3/fd8jQPGrX/0q/3tUtjjkkEPSxz72sfRnf/ZnZZ9HAYqyk2qQAAECBAgQIECAAAECzScQi7irV6/O1SbiB+jRo0enmTNndntrjlIlK71gXWo/Sj0v3paI8pXxS4EiHV9rKQEaZS+LWIEi9kYtZ0nOSrpHwKFv375VqYgS91q7dm0OLN177705tBHbfMQvtiK05CBAgAABAgQIECBAgACBBhW4/PLUklrY9+BaAgjpb/82pde/viKD//u///scnDjvvPMq0n4tGxWgqKW+exMgQIAAAQIECBAgQKCOBaLKRPxZsmRJXrQ98sgj09SpU6sWmmhLF4GEbdu2FW5LjPam94knnsilKYt0RAWKAw44YE+JzKL0rYhW7dnUsmJGvB0UgabYf3bNmjW5fGps8zFq1KiKVcQoynOiHwQIECBAgAABAgQIEGg6gQ0bUvr611PLnha/H/ob35hafhBM6f3vryhFBCh+85vfFO4FjHIMWoCiHIraIECAAAECBAgQIECAQBMIxJsFDz30UH7TPYITkyZNSieccEJFt+boDGu9LbIXsb9F3cKjiFbtPZtF6W98z7Zu9bFp06YcoogwxfTp04UpOvPh4lwCBAgQIECAAAECBAgQeJWAAIUHggABAgQIECBAgAABAgSaUiDeYI9tOSIwcc8996TjjjsuByei0kRUnSjSUZRF61JNYkG7aFt4RIAiqnmcf/75pQ6jKucV0aq9gRfxWYytPiJMEZUpIgQ1duzYdPLJJ6cxY8bkf3YQIECAAAECBAgQIECAAAECKalA4SkgQIAAAQIECBAonsCuli71LF639IhAswhE+f+lS5fmbQDiGD16dJo5c2ZNtubojPnGjRvTiBEjOnNJTc8t4iK7ChTleSSKOLd7jyy2+oggxbp161J870Q46pRTTknjxo0rD4JWCBAgQIAAAQIECBAgQIBAHQoIUNThpOkyAQIECBAgQIAAAQIEyikQb6ZHlYlYTF24cGF+Gz0WUydOnFhXb6YLUHT/qfja176WevfuXbg9TOshkNBWv976G2GKCEzFn+3bt+dtPiJIEX8XrdJM959yLRAgQIAAAQIECBAgQIAAgf0LCFB4OggQIECAAAECBAgQINCEAo8//niKRdN77703LVmyJFeX+OhHP5pDEyNHjqxLkXpbtH7qqafSsGHDCmVd1AoURbRqb+Lq7VlsO5YIVC1YsCAtW7YsxedEfB5MmzYtTZ8+XZiiUN+tOkOAAAECBAgQIECAAAEClRAQoKiEqjYJECBAgAABAgQIECBQQIE1a9ak1atXp+XLl6cNGzbkhdEpU6akD37wgw2xMFpvi9ZFrJhR1AoURbRq1ADF3mGKRx55JN18883pwQcfzBVpImwV2/pE2MpBgAABAgQIECBAgAABAgQaTUCAotFm1HgIECBAgAABAgQIECDQRuChhx5K8+fPz6X544itOaZOnZoXQV955ZW0ZcuWNHTo0IYw27RpUxo8eHDegqIejiKGAqICRTwX559/fqEI66kCRfht27YtDRkypFCGXe1M2++rqFoTW/1EdYqoVBFVa0455ZQ0atSohghhddXIdQQIECBAgAABAgQIECDQOAICFI0zl0ZCgAABAgTKIrC7pZUeZWlJIwQKIuChLshE6Ea1BKLk/qOPPpoWLlyYIjwRb4yPHz8+hyb2tTVHvVVtaM8xFnT79OmT+vXrVy3ubt0nFqaLFl4pagWKenpOX3zxxbRjx46GCRTszz4+axYvXpwDFdu3b8+hrMMOOyx/1gwaNKhb3xsuJkCAAAECBAgQIECAAAECtRIQoKiVvPsSIECAAAECBAgQIECgTAKxkBnbcsRC5k9+8pO8kDlt2rRcYn9foYm2ty1iFYSusjz77LP50gEDBnS1iapeV8RQQAQo4ihaBYoiWu3vYam3IE9HD30p9jHmCFPceeed+TPofe97XzrrrLPSmDFjOvwM6uj+vk6AAAECBAgQIECAAAECBKopIEBRTW33IkCAAAECBAgQIECAQJkEYkuOCE1EtYkNGzak0aNH59BEvP3dmaOUxdHOtFfLc+PN/+eee65utk4oYgWK2MIjjrlz59ZyKl9z7yJa7Q9o8+bNqX///unAAw8slGFXOxOfL4ccckjJl0eYYu3atTnQde+996ZevXqlWbNmpSOPPDKHuhwECBAgUDsBxflqZ+/OBAgQIECAQP0ICFDUz1zpKQECBAgQIECAAAECTS4QgYn487d/+7fpD/7gD/KCZAQmouJEV49YmB48eHDq3bt3V5so1HX1FAgpYl8jQPHKK6+oQNGNp7qewh4dDTOehS1btnRrq5mVK1emCHwtW7YsRbWc2bNnp2OPPTaNGjXKVh8dTYCvEyBAgAABAgQIECBAgEDVBQQoqk7uhgQIECBAgAABAgQIEChNIBYbH3rooXTbbbelVatWpXHjxqWPfvSjJW3NUdodUqq3bS86GlcRQwn763MR+ypA0dET1vHXizivHfd632ds3749vfTSS2ULOsRnWmz1EWGK9evX5xBFVM6ZPn162e7R1bG6jgABAgQIECBAgAABAgQIhIAAheeAAAECBAgQIECAAAECBRL4+Zo16dct23JEpYl77rknHXfccbnCRFSaGDRoUNl7Wu4F0rJ3sJMN1tPidRErFXzta1/L1Uhs4dHJB6/N6fX0DHY0ykpuRxJbfUSYIqpTxHYf73vf+9KUKVPS8ccfn0aOHNlR13ydAAECBAgQIECAAAECBAhURECAoiKsGiVAgAABAgQIECBAgEDpArGAuGDBgvTggw/mi2JrjpkzZ3Zra47S755SIy34bty4MY0YMaIzw6/ZuZVcnO7KoF588cV0++2356BOLGL379+/K82U/Zro13PPPZeGDBlS9rYr0WA9PYMdjb+anw2x1UcEKaLaTlTGifDYKaeckivvOAgQIECAAAECBAgQIECAQLUEBCiqJe0+BAgQIECAAAECBAgQ+P8C8eb1oy1VJhYuXJhi0XDgwIF7tuYYO3Zs1Z2quUha6cEVsarD/sZchADFK6+8krZt25YipHDggQemb3/722nnzp3p7LPPzovYvXr1SoMHD85VKWp11FuAopG+n2o1lvhcjGBZ/IkqOccee2wOUsTflajEU6tn230JECBAgAABAgQIECBAoHgCAhTFmxM9IkCAAAECBAgQIECgAQUef/zxHJa4884700MPPZRGjx6dZs2alSZOnFjzcvW1WiStxDTXU4CiNaDQr1+/SlC022bcO6o6REAiAjwRnogjtvCI4/zzz89/R8Biy5YtOVQxYMCAmlSliADFjh076mbhvJG+n4owlgicRYWeZcuWpfgcfcMb3pArU0yfPr1unomqf4O7IQECBAgQIECAAAECBAh0WUCAost0LiRAgACBZhbY1TL4ns0MYOwECBAgUJLAmjVr0urVq9Py5ctTLALG1hLTpk3LoYkivUVdhEXSkkBLOKneAhQxpAgmVONoreTw0ksv5SDEvu67d4Cibb8icFGLqhRxz2o6dWcuWgMn77bloAAAIABJREFUQ4cO7U4zhbm2aJ8N8TnadquPqNgTlSli26P4XHUQIECAAAECBAgQIECAAIHuCghQdFfQ9QQIECBAgAABAgQIEGgjENUl7rrrrrRkyZL8hn8EJqZOnZomTZpUWKdYlOzTp0+qRSWEcqPEWPr27bunokK52y9ne9UKBsRWIRGaiDmO4ERrtYl9jaW9AEXr+dWuSlEtp3LMbb1tN9LemOthLG3DFBs2bMhVfeIzd9SoUYUKqZXj2dIGAQIECBAgQIAAAQIECFRHQICiOs7uQqCNgPfWPQ4ECBAgQIAAgUYSiJLyjz76aFq0aFHemiMW7saPH59DEyNHjqyLoW7fvj0vsBepKkZX4eptsb1SW1PE4ndsvRHH4MGDSw6UlBKgaDs3batSRAAnAhrlPooTitndMrQe7Q6vnp6/juYpgjcdBW46aqOaX4/P4sWLF+etPqISTQQpoupPfBY3wmdbNS3diwABAgQIECBAgAABAs0sIEDRzLNv7AQIECBAgAABAgQIdEkgFuqitP38+fPTPffck6tLHHfccbmEfL2EJvYeeNFK9XdpYlouqqcwSLnf8I/KENu2bUvRblSZGDJkSKcZOxugaL1B3PuFF16oyBYf9bSQX0997ejhiBBChG969+7d0amF+3qEbhYsWJDDFOvXr0+x1ceMGTPSmDFj6vYzunDIOkSAAAECBAgQIECAAIEGFRCgaNCJNSwCBAgQIECAAAECBMorsGLFirR69epcZSJKxY8ePXrP9hzlvVNtWmuUAEXr9hJDhw6tDWQn7toaeOhK0KHtbaLqQVSC6NWrVxo4cGDJ1Sb21dWuBijatlXuLT7qKZRQz6GDvZ+HRvlMiDDF2rVrc5hi6dKl+ftk9uzZuTpFhN4cBAgQIECAAAECBAgQIECgrYAAheeBAAECBAgQIECAAAEC+xFYvnx5+uUvf5nuuOOOdMghh+wpBx8VJxrt2LhxYx5fIxz1tPAbC+5dCXu0Vq+IrVdim4UBAwaUZerKEaBo25EIdmzdujWHOrpazaCrRmUB6WQj9dTXjoZWT99HHY2l7ddXrlyZIhC3bt26FNWEZs2alY466qi8/ZKtPjoj6VwCBRWwc25BJ0a3CBAgQIAAAQL1IyBAUT9zpacECBAgQIAAAQIECFRJIBbVDj/88DRhwoT08Y9/vK635iiVrJEWS+tpLJ3ta1RjiNBEnz59cnAiggnlPModoGjtW3eqUnTWqJwenW2rnvra0dgaaSz7G2t81i9evDjdeeedKb63lixZkoMUDgIECBAgQIAAAQIECBBoXgEBiuadeyMnQIAAAQIECBAgQGA/AnfddVcu8b5jx450ySWXpDlz5jS8VSwexvYPvXv3rvux1lM1jVIqFkS1iS1btuR5iTnq169fxeaoUgGKth2OqhSx7UhspRBjiSBIe0cpRhUD6WTDjRI6aK1w0t3tZTrJV5PTFyxYkD/nI+Rz7bXXpunTp9ekH25KgAABAgQIECBAgAABAsUQEKAoxjzoBQECBAgQIECAAAECXRSIxdg4OlqE7Uzza9asSeeff3668sor0znnnJN+97vf5YW1iRMndqaZujo3FrTjKNdWELUcfD0tYu8vHBCLudu2bUuxkB1VJqq1kF2NAEXrsxFjjO/fCCpFmGJ/W3w0wnzW8vuhK/eOz7yoclLJsE5X+lXOa2Ibj9NOOy2NHDkyzZs3L5155pnpW9/6Vv53BwECBAgQIECAAAECBAg0r4AARfPOvZETIECAAAECBAgQqGuBJ598Ml111VV5DI899lh+a3jGjBllG9P48ePT97///byYtnLlyjRr1qw9C22NuMDWusXC0KFDy2ZYq4bquWJBBFlaQ0ERKCj3Fh0dzUk1AxRt+9LeFh8CFB3NWvm/Ht9D+wu0lP9u1W0xtu249NJLUwQoovLEzJkzU/y32K5p1apV1e2MuxEgQIAAAQIECBAgQIBA4QQEKAo3JTpEgAABAgTKJ7C7pake5WtOSwQIEKiZQCwor1+/Pu9N31ppIsITBx10UPrsZz+bF5w/85nPpFNPPTUdf/zxZelnVKA4+uij09SpU3N78Ub2ddddl+bPn5/DFLGtx6BBg8pyr6I0Uk8L1e2Z1dM4fvvb3+aqH/EMv/TSS/n5rmUVkFoFKNrOZ1hs3bo1h0diET+2L6mXYE89PXuN8j1U6udn62d4VBOKykIXX3zxnktjG48IT3zzm98stTnnESBAgAABAgQIECBAgECDCghQNOjEGhYBAgQIECBAgACBRhG4++67009/+tM8nKg0cdZZZ+WQxCmnnJLfIo5QRRxLly7Nf1qrUnR3/D/60Y9ye9dcc82rmopFuHPPPTctWrQob+sRby83yrFx48Y0YsSIuh/O5s2bcxCh2tUbOgsXz1K86R/bcxSlv0UIULQ6tlalCKd4Lsu5TU9n56qU82O7lQh/VGu7lVL61NVzGiUI0jr+CEhEtYlJkybl4MTeVYTiM/29731v+tjHPtZVMtcRIECAAAECBAgQIECAQIMICFA0yEQaBgECBAgQIECAAIFiCnSvFs5TTz2V96W/6aab0pve9Kb0wAMPpO9+97v537/whS+kj3zkI7lKRByxcHnSSSelCFyUY6E1yrtfeeWV6Z577tknbWzrEQtyccTfEydOLOYUdKJXjbJoGttgxFHLSg77Y49F9qioEMfAgQNzZZMihVaKFKBoNYxgz+tf//oU89qrV6/8/d2vX79OPNnVOXX79u25ikgjVKZplM+C2JrjmGOOyQ/Afffd95rgROuTceKJJ6aoOtQIn+PVedrdhQABAgQIECBAgAABAo0rIEDRuHNrZAQIECBAgAABAgTqXiC27YjQxIwZM/JYIlAxd+7cdNttt6Ubb7wxhyb+63/9r3vGuXeoorsAsbC9bt26dhdE483mKAc/bdq0XK2inhdPoxpCbJnQu3fv7tLV9PpYyN65c2dhAhRRSWHbtm0pwhNRFaNthYJ4pocNG1ZTr7Y3L2KAIp7L1i08wjK+73fs2JHDFEV6XiMM06dPn0KGOzrzgLVW/qiXbVP2NbYITkSFogjCRcCtvUpBMW8RxIv/rannz+/OzLFzCRAgQIAAAQIECBAgQGD/AgIUng4CBAgQIECAAAECBOpGYOHChbmvEahYu3Zt+p//83/mMEXrEdt3vPOd78xbfJTjiOoXn/zkJ3PZ9/aOWIC77rrr0vz589OsWbPSnDlz6nIhrsiVGzozn0XZSiE8Y7E/Fvqj2sS+thQp2pv+RQxQ7M+odaG/NSxTjsoznXnO9j63XraO6WiM9V5JI4ITsb1SBNtK+SyOakLxvx1LlizpiMbXCRAg0FQCu1pG27OpRmywBAgQIECAAIHfCwhQeBIIECBAgAABAgQIEKgLgSeffDJv2xHbd7QulJ5yyilp+vTpeeuOOOLrp556ag5RlOO48MILczWGiy++uKTm4q3n0047LcXfEaaot3Lw9b5w2naSahVMaA1vxFYO8Zx2tI1Irfq5vwe6ngIUbccQQZXWLT5qVZWiaHNZ0ofWPk6q1yBIVAOKahMReIvP7JEjR5ZEEIGLvn37pi9+8Yslne8kAgQIECBAgAABAgQIEGhsAQGKxp5foyNAgAABAgQIECDQMAKxIPanf/qnr6ou0RqqGDt2bH7T/6CDDnrVlh7dHfzy5cvT3/3d36VvfetbnWoq3miOt5+jHHy8CX3EEUd06vpantwoi8Btt32ohmdUIYltJWILhwhO7KvaxL76Ue1+dmRRxABFZ4xqWZWiM/3saB5q+fV6+wxoG1ybN29ehxWD9rY9+eST0xlnnJGOPfbYWrK7NwECBAgQIECAAAECBAgURECAoiAToRsECBAgQIAAAQIECOxf4Be/+EX67ne/m8usxxHbdzz//PN53/oITsTXIzxR7qBCLIrHPdatW9el6YltPeKN6NjWIwIgEago+lFvi6f786zGOKLaxJYtW3IXYouOfv36dXp6q9HPznSqiAGKrhq1rUoRoZauzE9n7AQoOqPV/XMjOBHVI1asWJE/Z2fOnNmlRg877LD0wAMP1MXnc5cG6CICBAgQIECAAAECBAgQ6JSAAEWnuJxMgAABAg0hYCPPhphGgyBAoLkEbrzxxrR+/fr8Zn9UnRg1alQ64YQTyrZVR3uaJ554Yrr88stTVLnoyhEhjFjkiy09YpFvzpw5XWmmatd0dbG6ah0s8UYbN25MI0aMKPHs0k+LCgfbtm1LEZ6IKhNDhgwp/eJ9nFk070YKULRyx5xFmCIqhPTq1StVaouPos1lVx/MehhHhNOius+0adPyZ2qp23XsbbJmzZp01lln5QCFgwABAgQIECBAgAABAgQIhIAAheeAAAECBAgQIECAAIHCC9x9993psccey9t3lLvKREeD/9KXvpSGDRvW7eBD2zLzEaaYOHFiR7euydfrYfG0FJhyj+PZZ5/Ni/CxAB/VJkrdoqOjvm7evDm317t3745OrcrXixagaA2sdDeo0opXyS0+yv3MVWXC93GTIo9jwYIFOYg2adKkXNWnq8GJ1mFHEGP79u3pggsuqBW3+xIgQIAAAQIECBAgQIBAwQQEKAo2IbpDgAABAgQIECBAgECxBJYuXZqiAkaEOMpxrFy5Mm/pEQt/8+bN6/YCYDn61LaNqJjRp0+fim93UO5+791eORaBo8pEhCZeeumlXP1kwIABZe92BCii7XIFMrrbwaIFKFrnoFwBirY+bbf4KEdVikbYwqOS3t15Nsu1XcfefZg9e3aaMmVKDuc5CBAgQIAAAQIECNSNgArLdTNVOlqfAgIU9Tlvek2AAAECBAgQIECAQJUEKlXiPbb1iBL055xzTq5uMWjQoCqNqP3bxNvYERgoSn+6ihKL2V1dFI8QSWz3EEGSSocb4l59+/YVoNjPRFdjQb8cVSla2xg6dGhXH9lCXFe0ANXj//Z4uu6G69KiRYv2fFaWE+rwww9PS5YsKVyQrZxj1BYBAgQIECBAgAABAgQIdE5AgKJzXs4mQIAAAQIECBAgQKAJBcaPH5++//3vl32RLRYrI0gRW3pEWfoIUhThKEf1hlqPo7MLwbFQv2XLltzt2FKjX79+VRlCbA0SRyWqW3RlAEWrQBGBnp07d1bNp21VigjPlPocVCPo0ZX57Ow13QkedfZeHZ1f7u069r5fVLWYMGFC2rBhQ0dd8XUCBAgQIECAAAECBAgQaCIBAYommmxDJUCAAAECBAgQIECgawIzZsxIH/3oR9PUqVO71kAHV8W2HhGgiCP+njhxYkXuU2qjjRCgKCWYEFUDtm3blmLxO7bQqMQ2ER2Zl9LPjtoo59eLFqColU88GxGmiEokvXr16rCaSa36Wc65j7aK8L0fVX9OOumkXAUntk6K7Y4qcURAY9WqVemb3/xmJZrXJgECBAgQIECAAAECBAjUqYAARZ1OnG4TIECAAAECBAgQqL7A7pZb9qj+bQtwx1tvvTU98sgj6ZprrqlobxYvXpzL1I8dOzbfq1ILhx0NYuPGjWnEiBEdnVbor0coIha/97UVSSx2x+J4LIxHtYkIT9TqqHaFhY7GefXVV6cID5x//vkdnVqVr8dcxTyVWgmiEp0qZYuPzZs3V3y7l0qMbe82axmgiIoQUZFnxYoVOUg2c+bMig753HPPTe94xzvSGWecUdH7aJxA+QWa9/+Pld9SiwQIECBAgAABAgReKyBA4akgQIAAAQIECBAgQIBABwKxoHfllVeme+65p+JWsfXEddddl7f1mDVrVt7WY18hgEp2pJaLqOUcV2xHMHTo0Nxk6xYLL730Ul7oLsqWGe0FPcppUWpbRatAUbRgQgRvtm7dmkM3gwcPTr179860Rdr6otS53td5tfrej+BEhCbiz8UXX9ydIZR87bve9a507bXX1rziT8kddiIBAgQIECBAgAABAgQIVEVAgKIqzG5CgAABAgQIECBAgEC9C8SC+4YNG6oWZqj229ht56dRFoNjHH369ElRxSAqGERwopbVJvb1PdAa7KjF9iH76o8ARWmfVHtXpYhnbPjw4aVdXNCzavEsxjYaEZqYNGlSDk5Uq+pOBNWOPvro9MADD1TtM72g065bBAgQIECAAAECBAgQILCXgACFR4IAAQIECBAgQIAAAQIlCJx55pnpk5/8ZF7oq+axcuXKvMAYR/w9ceLEit8+FoPjKEqVhs4OOBaCt2zZkmJ7jFjUruX2D6X0PaosCFDsWypsYpuV1koPpXhW+5yoShHb3kSlmAjpFP15259PhAoicFSN/kdA7Jhjjsldue+++6oWnGgde3yuXnXVVWnJkiXVflzcjwABAgQIECBAgAABAgQKLiBAUfAJ0j0CBAgQIECAAAECBIohcOGFF+ZF3GqVl9971PGm9jnnnJOmTZuWrrnmmoq+Nd36dn3r9hfFmIH2exF93rZtW96qI6pMRCAhFrVHjBhR+O7XatuEfcEUrQJFkWzae5DiWYvvl3gGY5uYXr16vWqLj8I/hC0drEblmVpW1mk7B7FlSHxmXHbZZfUwNRXt466W1ntW9A4aJ0CAAAECBAgQIECAQH0JCFDU13zpLQECBAgQIECAAAECNRJYvnx5uvXWW9Mdd9xRox6kFG+IX3fddWn+/Plp1qxZac6cORULUtTLwnVUy4gKAHEMHjz4VVt01MsYitTPq6++Oi8sn3/++TV7ztveuEg27YHs3c+9t/iIyhRFPyptHaGFa6+9NgfBZs6cWfWqE239Tz755HTGGWekY489tujTon8ECBAgQIAAAQIECBAgUGUBAYoqg7sdAQIECBAgQIAAAQL1KRDhhaOPPjqtW7eu5gOIt7hPO+20FH9HmKIS23oUuXpDVJmI0ES86R8L0/vbaqTSC8LlehBs4bF/yaiKEJUdiv6WfHvPWjyrW7duzeGeCPkUdTuSSn2/RPWc2H4otj+KCj4jR44s17dOl9s55JBD0sMPP1yxAFqXO+ZCAgQIECBAgAABAgQIECi7wO6WFnt0olUBik5gOZUAAQIECBAgQIAAgeYWmDBhQrrhhhvS2LFjCwGxcuXK/Db3oEGD8pvdRxxxRNn6VanF1O50MEIsUXGiX79+OTgRC9LtHUUcw776W6R+xhYescA/d+7c7kxV2a4tkk17g2oNerR3TtGrUpTbOgJe5557blqzZk3+fJo6dWrZnovuNBT9Oeuss9IDDzzQnWZcS4AAAQIECBAgQIAAAQINKiBA0aATa1gECBAgQIAAAQIECJRfYPbs2emP//iP89YZRTpiW494wzu29Yg3vCNQ0d0jFoSL8LZ8VJvYsmVLHs7AgQNzeKLUIyo7lBK0KLW9Sp1XyuJ7pe69d7u28Oi8dGtFlCFDhpR8cVSliDBQr1698jPamee65Jt04sTWcEdU++juEcGJ2K5jxYoV+XMptuso0hGfl0899VS6/PLLi9QtfSFAgAABAgQIECBAgACBgggIUBRkInSDAAECBAgQIECAAIHiCyxdujTdeOON6e677y5cZ6M6QyxaxpYesWjZ3ZBHLO7Gsb/tMSoJEIu527ZtS7EwHVUmOrMw3bZftRxDZ3xiMXfYsGGduaRi50aAIo6iVKD47W9/m97whjdUbLzlaHj79u1p586dXfpeaX3WYzuaCFPUKrQUY4g+dDd8VcTtOvae49j+aPLkyWn69OnlmH5tECBAgAABAgQIECBAgECDCQhQNNiEGg4BAgQIECBAgAABApUTiNLvM2bMSA8//HDlbtLNluPt71ggjL8jTDFx4sQutViuBdXO3DwCD/FmfhyxkNzRFh0dtV2LMXTUp319fePGjWnEiBFdubTs1xStAkWRbPaHHeGlvn37dvt5reUWH92t1rJ48eK8nVBsb3TNNdekkSNHlv3ZLFeDhx9+eFqyZEmh+1iusWqHAAECBAgQIECAQPEFdrV0sWfxu6mHTSUgQNFU022wBAgQIECAAAECBAh0V+CQQw5J999/f+EX31auXJm39IiFzHnz5nWpv0888UQaPnx4d8navb51+4N4+z0Wobv7Bnzbm7W+3d/VChYVHXibxosUEihagKJI1Tn29zxE+CC2l+ndu3fZHpkIEm3dujW3+cY3vrGsbe+rk139Xi/6dh17jzX6O2HChLRhw4ayzZWGCBAgQIAAAQIECBAgQKCxBAQoGms+jYYAAQIECBAgQIAAgQoLnHXWWemEE05IU6dOrfCdut98vBl/3XXX5UoUEaaIbT06E1Do6qJqKT2PvkXFiX79+qX+/ft3++39/d2zkmMoZZylnLNp06Y0dOjQUk6t+Dlf+9rX8mJ9UbbwqIf5q2QfIwT09NNP53mP7XTie6USR2efwQgixHYdrZ8tF198cSW6VfY2o8/Lli1LCxcuLHvbGiRAgAABAgQIECBAgACBxhAQoGiMeTQKAgQIECBAgAABAgSqJHDrrbemRx55JJepr5cjwgqXXnppXuy85JJLcpCilKPcC8NRbSIWamOBPhaCY0G40ke5x1CJ/hapj1GBIg4BitJnulrzF1UpInTUq1ev/P0T4aNyHZ0ZQ4QQ4nNk0qRJKYITRd6uY2+fc889N73jHe9IZ5xxRrnotEOAAAECBAgQIECAAAECDSYgQNFgE2o4BAgQIECAAAECBAhUVmDFihXpyiuvTPfcc09lb1SB1mNbj1j4jCP+njhxYrt36cyi6v4aat1GI8ITBx54YKr2dhpF2h5jf0adffu/Ao/GniaLFqAoks3+3MvxfdKZOY3vqS1btqSdO3fmMMXgwYO7vcVHKWNYs2ZNOumkk3IVm7vvvruughOtvu9617vStdde2+FnX2fmw7kECBAgQIAAAQIECBAg0FgCAhSNNZ9GQ4AAAQIECBAgQIBAFQSicsKGDRs6tR1GFbpV8i0WL16czjnnnDR27NhcSWN/b5BH5Yo+ffp06U33eFM+3piPxd7YniLCE7U4nnrqqTRs2LBa3Lrke5ayeF1yY9088frrr08vv/xyYSpQCFC0P6ERTNq2bVsOU3R1i49oI75X9xduiu06ooJNhMcieDVz5sxuPmW1uTw+z44++uj0wAMP1O1nd23k3JUAAQIECBAgQIAAAQLNJSBA0VzzbbQECBAgQIAAAQIECJRB4OSTT05/9Vd/lUvY1+sRi4nXXXdd3tZj1qxZeVuPeLO87bF9+/b00ksvlbzY2LoQG9f07du35OsqaVikcML+xlmkPkYFigi9nH/++ZWclpLbLpJN0ecvQhBbt27N1Sje+MY3llyVor2gVAQnIjQRf2K7jno+ogLPVVddlZYsWVLPw9B3AgQIECBAgAABAgQIEKiwgABFhYE1T4AAAQIECBAgQIBA4wlceOGFeXGy3hcUY2bi7fJzzz03RXn+KG0/derUV01YKRUAYgE2Kk7069cv9e/fv2bVJvb1pNXDAnwpxtX4LooAzKJFi3L45cQTTyx5Ab6Sfdu8eXPVt33p7HiK9oxFAObpp5/OwyilKkU8f3tvA7JgwYIcmoiQWHzO7a9KTWetanl+hEHC5rLLLqtlN9ybAAECBAgQIECAAAECBAouIEBR8AnSPQIECBAgQIAAAQIEiiewfPnyHDZopDeZ4+3sWDCNI/6eOHFi/uf9LQ7HYnssvEaQJEITsVBbxCMW4AcOHFiIMMD+fKKPtQyexFxu2bIlb9dy88035wDMKaeckreFiIX1Wm2/0tHWEkV43mJBPrbQ2N/2F7XuY1SliHBTr1698jMWIae9j7bf4xGoOumkk1KEou6+++68zU+jHFOmTMlbFx177LGNMiTjIECAAAECBAgQIECAAIEKCAhQVABVkwQIECBAgAABAgQINLZALC4efvjhacOGDQ030NjWIwIUsa1HvHke23iMGDEij7N1sTgWtmNRvaiLxm0npXXxeF8Lx0WZvFoFKGJuY/E/ghOtcxlbeBxwwAHp7LPPzjzRt9iSpZRKBuX2rIcARfRxx44dhdiupj3/+N6NkEyEYiJM0bbiRAQoYhxRoWHFihX5+3/mzJnlns6at3fIIYekhx9+uPBzVXMoHSBAgAABAgQIECBAgECTCwhQNPkDYPgECBAgQIAAAQIECHRNYMKECemGG25oqDe0WyUiIBJBiqiyEUGKr3zlKyneZI9F2KFDh9asIkFXZioCFHEUtUJG9K3aIY8IRcSCeYRKBg0a9CrW66+/Pr388stp7ty5r/rvrZUMqhmkqIdwQnyvRAClyAGdvb9vwjWCMxGmiPm84IIL0g9/+MP8vR7BiUbYrmPvMccWRTNmzMgBCgcBAgQIECBAgAABAgQIEGhPQIDC80GAAAECBAgQIECAAIEuCMyePTv98R//cZozZ04Xri7+JbHI+sgjj6QYZ1TauO222/Zs61H83v9nD+uhikG1Qh6t1STa25YjKlDEsXeAolW07ZYQbasYVOKZqJZLd/peq+oh3elz67ULFixIX/7yl9P48ePzfL/nPe8p9FY33RlzBMKeeuqpdPnll3enGdcSIECAAAECBAgQIECAQBMICFA0wSQbIgECBAgQIECAAAEC5Re46667cqjg7rvvLn/jNWwx3qiPhet4o75///55+4aVK1fmIEW8mT5v3ry6e0M9tigYPnx4DVXbv3UlgwKtAZKYx/aCE6097ChA0Xpe65YQ8e+VClJUuzJHVx6QTZs25aos9XQ8/vjj6dxzz01RleGyyy5LH/nIR3IVjaeffjpXmTn44IPz934jHaeddlqaPHlymj59eiMNy1gIECBAgAABAgQIECBAoAICAhQVQNUkAQIECBAgQIAAAQKNL9BIJeFjkT0Wgnv37p0XTttud9G6UB6LxPEW9yWXXJJL/V988cWv2f6hqLNe9ABF+EfAoZzbjESbW7ZsyQvjMacHHnhgSdOzvy089ndx2yDFwIEDS75PKZ2JME/fvn0UsOlEAAAgAElEQVTL2mYp9+3MOfUUoIjgxKWXXppWrFiRv49ju46ooBHzFt/7rUfbKiPx7NTT9iT7m7vDDz88LVmypO7CX515Fp1LgAABAgQIECBAgAABAuUREKAoj6NWCBAgQIAAAQIECBBoQoGjjz463XHHHXW7KBeLp7HQHovrey+itp3OtgGEWNSORdj58+fnRdh62MKkHgIUsWg9ZMiQbn8XtQ1OdKW9qEBxwAEHpLPPPrtTfWkNUuzcuTMHQcpRwaAetsco+rPVOomxXUd8v06aNCmHn6KaTBzt9b/tnPbq1atilUY69aB14eQIjkyYMCFvReQgQIAAAQIECBAgQIAAAQIdCQhQdCTk6wQIECBAgAABAgQIENiPwFlnnZVOOOGENHXq1Loxim0RYrE+FkejqsT/Y+9+gKwq7/uPf4Ed6K4w/AdhzBSrcaY2CsZOiRCzy08DU40FJNVABFQsyFICGxBrDF2pRgOiuCGCUA1/VAw0CpSIgZqya4UUZ4xgM3RqYpMMKUKgSxgsmxJXfvfztGd7WfbuPefcc849d/f9zDAge85znvM65zJpn8/9fv1UJjhy5IgNHTr0vHs8ePCgzZ8/3xSoeOqpp6yysjK1Bm2tP02L1bM4depUQQEKPYczZ8645xkmOOF5BK1A0ZajV8Gg0CBFKQQojh07ZoMHD07T63TeWrZv3+4+pyNGjLAVK1ZcEPbyGwDRu6XnGmVAJik0hUdef/11e/7555O6JNdBAAEESk7g48yKu5bcqlkwAggggAACCCAQjwABinhcmRUBBBBAAAEEEEAAAQQ6gcBzzz1nP/nJT9zGZJqHqhJo81OboNrU7tOnT6DlttemoKGhwbX00Dfa161bl8pqHKXQZiHsGhUyUPsPVRCJotWCAhQaQStQtPVCeUEKtRFpr8JJrpcxrEmgl7vAg/0GEAq8TODT22rX0dYkYdbvPVfNN3DgwPPafwReaAIn1NTU2Kc+9SmbMWNGAlfjEggggAACCCCAAAIIIIAAAqUuQICi1J8g60cAAQQQQAABBBBAAIGiCdTX19uyZcts586dRVtDexdWVYKmpibTBrZaKvipNtHWfNrI7tevX86NUl2nrq7OtfVQmEJtPYKGNOIE7Ggb8V4gRsEJPZewz7Ut8ygDFN78XluRoG0gwmzux/ketTV32tbofRZVFUaVJ9SuI9fwWnSoEk2YofOPHz/uqtn07ds3krYtYdaR7xy173jkkUdSXSUn3z3wcwQQQAABBBBAAAEEEEAAgeQECFAkZ82VEEAAAQQQQAABBBBAoAMKqKLD4cOHUxMY0Ga1AgNlZWVuQ1PrK3So7Yc2v/NVONDmrb7tvW3bNtfWY/r06YVeOpLzSyFA4WeN2UEEVXSIMjjhQUfRwiPXQ/M27PXz9gI53vl+TCJ5QUJOUmgAIeRlc56mVhUPPfSQVVVVueCEqsK0N1SRRiGcKMJOXlUK/TsR17sZxkv/Jo0aNcoOHToU5nTOQQABBBBAAAEEEEAAAQQQ6IQCBCg64UPnlhFAAAEEEEAAAQQQQCA6gSlTptjMmTPdpmUxh1o5aINdm+ph2iW0t/agG61q66GNXA39XllZWUwa0yZqeXl5LIGDqG6svbCAF5xQJZH+/ftHdck254mjAkXrC3nBg+bmZhfwUdCnrZH2AIVXCSTuZ5Lvgatdx5gxY9xhe/bsyRuc8ObTvxmFVKZpa13ZzzZoxZF89xnm5/q3aPny5bZjx44wp3MOAggggAACCCCAAAIIIIBAJxQgQNEJHzq3jAACCCCAAAIIIIAAAtEJLF682FV7aK9UfnRXO38mVYbQN7+1aaky/HFUJPCuGKZVQdBvxMfppLmjqMYR1xrb8tXz1S8916Q26ZMIUGQbepUL2gpShHnn4no+bc2rZ1PM90rBiSVLlphaCSmoFLTiS9wBFQWv9HzzBWXifGby0b+PDz/8cJyXYW4EEEAAAQQQQAABBBBAAIEOJECAogM9TG4FAQQQQAABBBBAAAEEkhd4++233eZlUt9w9r71rs1JbTpHUX7fj1rYzWxVf6irq7P169fbnXfeafPmzUtszd59Ba2g4ccj6mNOnDhhAwYMcNOqMoBaK0TVgiXIWuNs4dHeOrwgRXaVjbg3+IO4tHVsHBUc/K5JwQC1yZk/f37oz1TYz7TfNWYf5z1f/d3AgQNd6CyJccsttzijG264IYnLcQ0EEEAAAQQQQAABBBBAAIEOIECAogM8RG4BAQQQQAABBBBAAAEEiieggMBVV11lhw8fjnURuk5TU5Npgznqsvt+Fl7oZqu+LV9TU2MHDhxwG7/jx4/3c9lIjvHaCqhKR1qH3p+KigoXnOjXr1+s1UTaM0i6AkXrtXjtStT+QZULhgwZktZHZgp46FklFQYQRJRVXQr9TId5MPosHj9+3FWF6Nu3b872LWHmbuucK6+80vbt25d4aCuq9TMPAggggAACCCCAAAIIIIBA8gIEKJI354oIIIAAAggggAACCCDQwQSuv/56W7lypY0YMSLSO9NmsjZptUFbjGoE2TcT1WZrQ0ODq9ihod8rKysjNcs1WVqrGXiBAVXJuOSSS4oWnPDcih2g8NahDfZf/vKXrspK0iEFvy9kVO/Ux5kLds1zUQWQ7rrrLtPv69ats6qqKr/LzHlcVOsPuxCvKoXCMr179z7v3T+XmbRL2In/9zyFtaqrq12AgoEAAggggAACCCCAAAIIIICAXwECFH6lOA4BBBBAAAEEEEDACUSxqQElAh1NYO7cuXb55Ze7UvpRDLUG0MZ6jx493MZikt9wz7V+VcBQ9QtVSYhiqK2HAhRq61FbWxv7N8SjCoBEce+awwtOeC0rjh07ZoMHD45q+tDzpCVAoRtQWxO1qGlsbHTVKBSmUJAoLSOJd0qBCbXrqK+vd5+X6dOnR3L7Xiug/v37RzJfIZN4FWL0jBWmiCowo39jdJ+LFi0qZHkd+lw/4Z0ODcDNIYAAAggggAACCCCAAAJtCBCg4LVAAAEEEEAAAQQQQAABBAoU2L17t61evdq2bt0aeqbTp0+bvpGtzUS1mlB4Ik1DFRK8Teyo1qVQhjY51dJj/vz5LkgR1zhy5IgNHTo0rul9z6vnrPtWECV78zqJzXg/i0xTgKK1iVexIC1BirhDL95nY8KECS6cNWzYMD+P0NcxUQeifF3Ux0H6d0bPOYrAjCp2fOELX7BJkyb5uDKHIIAAAggggAACCCCAAAIIIPA/AgQoeBMQQAABBBBAAAEEEEAAgQIFwpaK974Frk1DbQrr2/ZpHd63xBXuiHpktydYv359LG09ih1QUFWRs2fP5mzFUuz1ec80zQEKb41ekMKr3hH1++h3vrhaYGzYsMFVm1CbDoWKogxOePemtUdV6cGvV9DjvOes8wYOHBi4Es9VV11lO3bsiMUv6L1wPAIIIIAAAggggAACCCCAQOkIEKAonWfFShFAAAEEEEAAAQQQQCDFAqNGjbJNmzb52qzTt7+bmppcSwy1JEhbtYlczAoBxFnyv6GhwbX00IbxunXrfFn6fSXi2uxu7/peQEbBCW1Wt/ec47b165SmAEU+EwWPTp06FWnbB79OOi7qdyqudh1t3VNaAjt+vBXeOn78uKvO07dvX19tXGR5/fXX2+HDh/1cgmMQQAABBBBAAAEEEEAAAQQQaBEgQMHLgAACCCCAAAIIIIAAAghEIFBdXW3jxo2z8ePHtzmbNtO14VpWVpazCkEEy4h1iqTaYCxZsqSlrYdaF0RRmSPJDWM968bGRrex37t3b18BmSTX195LkqYAhV8TrzqK7ivJqgp+15fvQ6nNfrXr2LZtm2tlo3c+7hHV2uNeZ+v5vaoU+T5bquLx+uuv2/PPP5/0ErkeAggggAACCCCAAAIIIIBAiQsQoCjxB8jyEUAAAQQQQACBpATOZS7UJamLcR0ESlDgueees5/85Ce2YsWK81avb9FrQ13VB7SZrgBFqY4kN11VpUNBCrX0UDuDQjeV9RzirvbhBSdUWSTos07Str33L00BiqAVHrwghZ6D30oFYT+LXnWRQiuyJNGuo617TMv7Ftbfe9bNzc1tViCpqamxT33qUzZjxoywl+A8BBBAAAEEEEAAgVIV4P+BVapPjnUjkBoBAhSpeRQsBAEEEEAAAQQQQAABBEpZoL6+3pYtW2Y7d+6006dPm74prU2+QYMG+apAUAr3rg3tJL/hLxO19VCAQkO/V1ZWhqLSM9G31isqKkKd395JmluBD80ddkNdAY+goYvIbyQzYVoCFPrsqD1HWE+vTU6vXr18tXwIaqn2IWrNErY6iv69uOuuu2JpV5PvXgq1zTd/0j/Xs9C/twpTeM9b7TseeeSR0P9eJH0PXA8BBBBAAAEEEEAAAQQQQCA9AgQo0vMsWAkCCCCAAAIIIIAAAgiUuMDQoUPthz/8oQtNhN34TTOBggIa2qRMeihIceedd4becNYmq7fBGtXaFXrQvNpEL9QkiQoZfu47LQGKqCo8eC0fysvLQ4cd2nJTQEOVRoIGctSuQ5VVFKBQIGj69Ol+Hkukx+id/fjjj2MJlkS60BCT6Xmr1dDUqVNt//79IWbgFAQQQAABBBBAAAEEEEAAgc4uQICis78B3D8CCCCAAAIIIIAAAghEJjBlyhSbOXOmVVVVRTZnmibyyuYrIFKMoU3ruro619ZDYQq19fBbASDKb90r7KDqA6rGodYsUQzdmzb5o5ov7JrSFKBoamry/Xzz3a821k+ePOla6AwcOLDgVjpBAy/eu/vUU0/Z/Pnzrba2Nt+SY/t50LXHtpCYJlbYas2aNbZp06aYrsC0CCCAAAIIIIAAAggggAACHVmAAEVHfrrcGwIIIIAAAggggAACCCQqsHjxYrcxW8zN0bhv+IMPPrAhQ4bEfZl259dmdE1NjW3bts20Ie33W/yFrF0VEdRSQlUsogxOeDcaZ4uRIA8rLQGKOCqGyMELAenPhbSjCfIubdiwwVWbULBK/zYMGzYsyCOJ/Ngga4/84glMqAofCiMtWrQogatxCQQQQAABBBBAAAEEEEAAgY4mQICioz1R7gcBBBBAoEQFzmXW3aVE186yEUAAgdIWOHjwoB07dszGjh1b8I28/fbbbqN0x44dBc+V1glUHl+tStIw9E1zeWvo98rKynaX9etf/9q1VwkyFJxobGx07Rp69uwZW4WIYrZHyfZIS4Aibg8vSKFATO/evQO34vDzLqldx5gxYxzvnj172g1OJPm/BDt6gOKWW25xVT5uuOGGIB91jkUAAQQQQAABBBBAAAEEEEDACRCg4EVAAAEEEEAAAQQQQACBTidw9OhRe/fdd23jxo02fPhwF57Q74UOVUYYNWqUHTp0qNCpUnt+Gjdf9Q1/bZhOmDDBVqxYkbPtg4IygwcP9mWrDXy1fVBwon///r7OKeSguCouBF1TmgIUsk+ipYnXkqVXr14uJONntBegUHBCVRDq6+tdsMdvhRQ/143imDR+hqO4L2+OK6+80vbt2xdZ+5co18ZcCCCAAAIIIIAAAggggAAC6RcgQJH+Z8QKEUAAAQQQQAABBBBAIGKBxx9/3M04depUu/jiiyOd/aabbrJHH33URowYEem8aZnMzzfvi7FWhVfq6ups/fr1duedd9q8efMu2ED1Uz1Dm+kKM/Tp08e0oZ7UUKWLpqamom/6piVAoecQZ8WPtp6rAjMKzvgJUuQK4yg4obYyCvS09Q4m9T7luo5XeSNoJZZir9vv9Q8cOGDV1dUuQMFAAAEEEEAAAQQQQAABBBBAIIwAAYowapyDAAIIIIAAAggggAACJSOgTdHnn3/eZs+e3bJmba6p+sQzzzzj/k5tPBSk8FudoL2bnzt3rl1++eVu87QjDgUVVBmgoqIilbenb//fddddpt8Vpshu69HeN++9KgT9+vVLpOpBazwFKPSuJlHtor0H15kDFJ6LF6To1q2b6X0oKyu7gKz1u6QqKKo2UVVVZbW1te226yjmB0fhoLNnzxY9qBOXgUJU+iwtWrQorkswLwIIIIAAAggggAACCCCAQAcXIEDRwR8wt4cAAvEIfJyZtms8UzMrAggggAACCEQssHr1atu1a5f7VrJadXhD7R6mTZtmu3fvdt90/9nPfmaTJk1yVSkKGZpP19y6dWsh06T23FLZgG1oaHBVAFRJQhUB1KKl9aa3NlpVceB3v/ud2yhPol1Eew9WIQ4CFP8jlAYLr1qD1tM6SOFVYskO7Kxbt84FKNI8ilHZI0kPBdj0DPRvOQMBBBBAAAEEEEAAAQQQQACBMAIEKMKocQ4CCCCAAAIIIIAAAgiUhMD777/vKk2MHj3aBSWWL1/esm59W/zo0aPuW+OqPqE/KzyhahWFtPXoDCXk26vkkLYXQ99I1zNWWw9VIfmDP/gDa25utsbGRldJI+k2Ee35pME1LRUo0mDhPSsvSKH3RkEKVaZQ1Zpvf/vbVl9f796v6dOnp+3Vb3M9aXKNA2zUqFG2adOm1FYAieOemRMBBBBAAAEEEEAAAQQQQCBaAQIU0XoyGwIIIIAAAggggAACCKRMQOX49at1OEKBidZBiYULF7rjVK2gkNHRN/FKbRNWbUeWLFlizz77rN1///0uSFHsSg9tvV9pcCVAkfuTryDFqVOnXHBizZo1dvvtt7tWPcOGDSvkn4tEz03DOxbXDasayPXXX2+HDx+O6xLMiwACCCCAAAIIIIAAAggg0AkECFB0godcnFukwUFx3LkqAggggAACCCCAQC6Bxx9/3AUmcrXoUKDi3nvvtRdeeMFVJShkqF3IuHHjbPz48YVMk9pzS20TVm0L1K5D61aJf/2+fv16q6ysTJVxGtpWpCVAkQaL1i/Hhg0bXLWJ6667zhYtWmSDBw+2Xr16FfzvRZIvodd6JMlrJnUtPZ/9+/fbqlWrkrok10EAAQQQQAABBBBAAAEEEOiAAgQoOuBD5ZYQQAABBBBAAAEEEEDgQgGV3FeIQgEJb6hdh/7+sssus71797rQQ66ARRDT5557zn7yk5/YihUrgpxWMseWSoBCm/Bnz551bRd69OjhQhRNTU3umaulhyoHrFu3LjUVBNLgmpYARRosvA+kKhuogonXruMLX/hCS+sXVbc5efKke7/0npWVlaX6c5wm16ihampqXLjltttui3pq5kMAAQQQQAABBBBAAAEEEOhEAgQoOtHD5lYRQAABBBBAAAEEEOjsAnfccYepOsQf/MEfOApVpHj33Xddiw/9XeuWHmG9tNG6bNky27lzZ9gpUn2eWmJ0797dKioqUrdOhSQaGxvdurzgRPYis7+Br03xp556yubPn+9aMfTp06eo95OG6gAEKP7vFVBwoq6uzrZt29byjuinbT0ntffIfu/SGKTQZ0P/1qWxfU0UHzy173jkkUdSV1kmintjDgQQQAABBBBAAAEEEEAAgeQECFAkZ82VEEAAAQQQQAABBBBAoMgCqkChShNq0aEgxahRo2Jb0dChQ+3QoUNF35SP4wZPnz7tplX7grQMLzjRrVs36927t6sI0NZovfmtMIiCFGrpofYMClIUaxw7dsy1hSjmSEuA4sSJEzZgwICiUXjtOqqqqqy2tva8KiXtVXHwghTNzc1tBniKdkOZC6c5+FSoi+5NFYTUwoOBAAIIIIAAAggggAACCCCAQCECBCgK0eNcBBBAAAEEEEAAAQQQKAmBo0eP2sKFC2348OE2duxY93vcY8qUKTZz5kzTBmxHG94m8aBBg4p+awpz6Fv1qojh55v1uao8NDQ0uACFhn6vrKxM/N6OHDliCt4Uc6QlQFEsiwMHDtjEiRNd8Gnr1q1ttnfx0wbD+4wo2NO3b18X2ir20LtfCm1Gwjjp87tmzRrbtGlTmNM5BwEEEEAAAQQQQAABBBBAAIEWAQIUvAwIIIAAAggggAACCCDQKQS0yZ7kJubixYtNZfz17fWOOIrdbuI///M/TZvTqjThJzjhPYN8G/Pbt2937RpGjBhhK1asaHMDPa7nmW9tcV03e960BCiSrsahdh2qRKL2OwrQTJ8+PSd30Oekf3sU9FHFliT/DWp9A36CH0m8Y3FcQ8+uvLzcFi1aFMf0zBmjwLnM3F1inJ+pEUAAAQQQQAABBBBAAIGgAgQogopxPAIIIIAAAggggAACCCDgQ+Dtt9+2J554osN+IzroJrIPMl+HKDhx9uxZ16ajoqLC1znZB/kJfqgdQF1dnWvrceedd7q2HqpIEPcodtsK2b7xxhvuNj//+c8XdbPfz3OK6nlo812hCf3yE3gKG0RQkOLkyZMu9FOMShBh1x2Vc5zz3HLLLS74dMMNN8R5GeZGAAEEEEAAAQQQQAABBBDoBAIEKDrBQ+YWEUAAAQQQQAABBBBAIHkBbcKPGjXKDh06lPzFE7hikpuxqjRx6tQpa25udhvP2oAOO4KsO0hVgrDryT4vyNqiuJ43hxdKka3aIGjcfffdRa2akITFhg0bXGhCbXYUnBg2bJgv1kLXpve5sbHRunXrlmiQotB1+8Ip0kFXXnml7du3L5GgU5FukcsigAACCCCAAAIIIIAAAggkJECAIiFoLoMAAggggAACCCCAAAKdT+Cmm26yRx991LWD6GhDFQLi/ha9t9Esu0KDE55/mMoGDQ0NbqNdQ79XVlbG8jjDrK2QhaithH6puoZXzaN1C49itZ+I00LBmIkTJ5pCTlu3bg38+YxqbR999JELUmiookohwaB874F3rUGDBuU7tOR+fuDAAauurnYBCgYCCCCAAAIIIIAAAggggAAChQoQoChUkPMRQAABBBBAAAEEEEAAgRwCc+fOtcsvv9y1gOhoQxvvGr169Yr81rzgRPfu3a1///6Rzq9N8/Ly8lCb1apYoDYBEyZMsBUrVkT+bfeoNubzgXm+PXv2vOD5tQ5QeHMlHaSIwyKKiiKyk0WU76UXbjhz5owNGDAgltYpmvvjjz+OZe5871vcP1e7Hf1bMXv27LgvxfwIIIAAAggggAACCCCAAAKdQIAARSd4yNwiAggggAACCCCAAAIIFEdg9+7dtnr1avct9442tOmrthpRbiQr3KCNXn0TP8p5s+0LDX5ojdqwXb9+vd15550uHKMKDlGMuFss+Amm5ApQePeXVJAiaoslS5a0PLPp06f7btfR+rnq/VQrmTiCQ7pWXL5q06LATJxVLqL4DISZQ0G1W265xcaOHRvmdM5BAAEEEEAAAQQQQAABBBBA4DwBAhS8EAgggAACCCCAAAIIIIBATAIdvbR8VJvc2tw9e/as2+CNa2Pae8TaANe1Cg09qJrBXXfdZfpdYYoo2nrEUXVB9+0nOKH70K81a9a41hZf+tKX3D0NGzaszU+Ht9EfVWuV1hfROxFFiEZVQ9R2paqqympra0MHJ7z1FVLBJMg/M56vKiuovUdZWVmQ0y84NqrPakGLiOnkUaNG2aZNmwp+tjEtj2kRQAABBBBAAAEEEEAAAQRKTIAARYk9MJaLAAIIIBC1wMeZCbtGPSnzIYAAAggg0CLQkTf3jhw5YkOHDg31tL1WCAozxLUJ39bCoq6c0dDQ4Np6KJDx1FNP2fDhw0N56CSFBqLYLPcW4Cc4ofVv27bNhUAUDtB96HcN/VkBCt2fqja0NbzwS5TPMIo2GQqD1NTUmEJMei7jx48P/VyyT4z6GeVblPcMu3Xr5j4nYYMUHTVAoed8/fXX2+HDh/NR8nMEEEAAAQQQQAABBBBAAAEEfAkQoPDFxEEIIIAAAggggAACCCCAQDiB6upqGzduXGQbuOFWEc9ZYTZlszeEFRYoRkuBMOvOJ6i2Hqp0oLYeqnQQpsJFVG0W/AQndD9asxf+UGhCVRq8Shr6b1Vv0O9eFYo9e/bk/Ja/qmdoFLLJ7xkXEqDQhrraddTX17vnkSv4ke955vp5HO+On7Uo+NPY2BjauFjr9nNvhRyjd/TQoUO2dOnSQqbhXAQQQAABBBBAAAEEEEAAAQRaBAhQ8DIggAACCCCAAAIIIIAAAjEKbNmyxX70ox/ZihUrYrxKcaYOsinrd1M/iTsJsu4g61HYQJv3quagzft58+YFOd1Onz5tatkQNlQiY83RpUuXvO0vFJ5QZQYFDhSQ0Ps5YcKE89ar+1HAQpvUGjrunXfeyRkOKXST37u47kOVSYK2c4m6XUdbDy+ud8fviyLj48ePu8Plo7Y3+Yb3XAYNGpTv0JL7uaqMXHfddXbbbbeV3NpZMAIIIIAAAggggAACCCCAQDoFCFCk87mwKgQQQAABBBBAAAEEEOggAvom/LJly2znzp0d5I7+7za0wa4N/4qKipz3pg19Hadj+vfvnwqDY8eO2eDBg2Nby8GDB13wQPetkIJX1SHfBWWlETQ44AUnvHPzBTC0rmuuuaYlPNFeZQnNqXtR4MJrU5KvqkOhQYqgDtu3b3drHDFihAuCeBUz8nmH+XmxAxTZa/7www9dYCZfkELvR1NTU6iqKGGMkjxH7TseeeQR35+xJNfGtRBAAAEEEEAAAQQQQAABBEpTgABFaT43Vo0AAggggAACCCCAAAIlJDB06FBXZj5MW4c03+aZM2dcpYC27kvtKPQzfUM+aCAg7nuOO0Dhrb+hocG19NCG/rp16/Ju7AcNDug6cm5ubrYg7VBUqUHr0nNTeELBg3xDFTVUXSNfFYrsecIGKeTQrVu3doM5uk7c7TraMlGrkrRVcvCCFAoztRVSiqo1TL53JOmfKwg0atQo928rAwEEEEAAAQQQ6LAC5zJ31qXD3h03hgACCKRSgABFKh8Li0IAAQQQQAABBBBAAIGOJDBr1iybPHmyVVVVdaTbcveS/Y18fdNdm7kKTvTr1y90K4q4kZLcBNcmr6o3qK2HQgtq65ErSBOkdYUXUAnjrLYHqoxRW1vrWo34GQorjBkzxgT2EMEAACAASURBVFXV2Lp1a6B32QtSKBThpwqJrlFeXp7z/dFaFALxTHUfSY00VaBofc8KNJ06dcqFT/RelJWVXfAZTcopiesooLR8+XLbsWNHEpfjGggggAACCCCAAAIIIIAAAp1EgABFJ3nQ3CYCCCCAAAIIIIAAAggUT2Dx4sVuMzPJjd6k7lYbytqsbWxsdJcMs6Gf1Fq96xRjE1yhAFVw0Ka/QgsKUrQeXgClvZBBIcEJ73p9+/Z1QYiTJ08GqoqiNhkKLih8ka+NR1vPVPen9yRXpQTvnPYqJuj68lMYSZ+nONt1tHUPxXh3gn4+Wlf+OH78uA0ZMiToNKk/Xp8nBW0WLVqU+rWyQAQQQAABBBBAAAEEEEAAgdIRIEBROs+KlSKAAAIIIIAAAggggECJCrz99tv2xBNP2KZNm0r0DtpetjbEf/nLX7qqAmoh4X3jPe03qQ36Yq1X35r3qj7o98rKyhYubXyrgkCuNgxRVPbIriShAEWQ4bXxUICirQCI37m8IIVau6jFS+vR1vM5cOCATZw40QU+VAEj6eCE1tje8/F770kep/UqPHHixAm79NJL27ROcj1RX2vKlCk2Y8YMu+GGG7Km/jjz565RX4r5EEAAAQQQQAABBBBAAAEEOpEAAYpO9LC5VQQQ8C9Aazn/VhyJAAIIIIAAAvkF9G3/q666yg4fPpz/4BI44vTp06ZNbm2ANzc326BBg0pg1f+3RK1fbQ4qKiqKtu5clRRatxeJouJE65vs0uV/miifO6f/1et/eAEK/R5FNRW1e9GzaB2k0D17IRIFPlRpoL6+3gVPwlS+8H+H7R+p4EdTU1Ogqh1RXbuQeVQ1Q5UatPZcoZVC5i/WuSNHjrRdu3aV3PMolhfXRQABBBBAIPUC5CBT/4hYIAIIINBZBAhQdJYnzX0igAACCCAQkQABo4ggmQYBBDqdwE033WSPPvqojRgxomTvXRvb2vDW5rY2YjUUDtHmbI8ePUrmvnQPGt49FGvhsqurq3NtPe68805X1UGb3Gq3oDV61lHbqpLDtm3b7J133gn0PqptxsGDB916x48fHxlb6yCF1yZDwQmFJqIKbBS64DQEb4LeQ+u2MJ51vjYqQa+T9PGqSFJdXW379u1L+tJcDwEEEEAAAQQQQAABBBBAoIMLEKDo4A+Y20MAAQQQQAABBBBAAIF0CMydO9cuv/zyglofFONOvA3YXO0j0hJGCGLTelM5yLlxHKsqCzU1NaZNYYUFPv/5z7twR1wBD11LbThUzUFhiJaRCVVkFmGWWU8mWWGZVIdlvt7vfqy1XXPNNe7Pav2hVhpRD29zf/PmzS5YosCGKl0Uo11HW/emAJFajkQdaInaMXs+hXQUlmhdbUXWeo5quzNw4MCSab/j3ZveD93X7Nmz4+RjbgQQQAABBBBAAAEEEEAAgU4oQICiEz50bhkBBBBAAAEEEEAAAQSSF9i9e7etXr3atm7dmvzFQ1xRIYPGxkZ3Zr9+/XJuGn/00UfuuFJr4+FVOQhBE8sp8t6+fbsLNmiDXkGKysrKWK6VHYZQQOEhBSUmTLBMeYnzr6eQxJ499ovM72PGjMnkKn7hKmWsW7culnVpflXHOHHihD333HM2atQoF1hIy2jdXiUt62pvHVqzPr8KSrQ1vM+v9znPdVza7lWBNAVsJk2alLalsR4EEEAAAQQQQAABBBBAAIESFyBAUeIPkOUjgAACCCCAAAIIIIBAaQiUSsl5Lzihb3f7/bZ92sIIft6ItKw521utUbSuLVu2uACFwgoKOMRR7eGuu+5qqT7x82HDbJiqTrQ1FJ7I/KrP/Fwb1gp4DB8+3A+x72MUnFC7jvr6enffY8eOdW1MvCoJCuekoepDqQYo/ISbvCCF3se+ffumKrjS1oukcM2mTZtSU53E98vOgQgggAACCCCAAAIIIIAAAqkXIECR+kfEAhFAAAEEEEAAAQQQQKCjCIwbN87WrFmTyk0/teJQuX+V+tdGfpBx5MgRGzp0aJBTin5ssQMUrYMTHoiqLwwYMMA9C7UpUGBh/vz5LkgR5VBoQVUlfj/ze32eibdlAhQTM+uJo/qEghNqI6K51VJE7TpaBxXUOiNXC5koTfLN1ZEDFNn37nmrhUyaKoB4a9S7e/3119vhw4fzPTJ+jgACCCCAAAIIIIAAAggggEBgAQIUgck4AQEEEEAAAQQQQAABBBAIJ1BdXW0KUYwfPz7cBDGcpc1ShScUmtCGaZhR7DBCmDUXK/SRKzjh3UPrdWmzWNUi9LuCBlG29TiYadnx80zrjgm5qk/876IOZH7fnqkMEWWIY8OGDa7ahKpaaF4FJ7xx7NgxGzx48AWPVe9qc3Nzuy0pwrwLfs/JtS6/5xfjuEJCH6oAon8bysvLY6mCEtZD786hQ4ds6dKlYafgPAQQQAABBBBAAAEEEEAAAQRyChCg4OVAAAEEEEAAAQQQQAABBBISUGuGH/3oR7ZixYqErpj7MlF+q1+btP369bOysrKi35ffBRSysez3GtnH5QtOeMfmCnY0NDS4Kg0KGqxbty66KiY1NZYpc9H+LSnc8POfh7ntC85p3a5DVSdaj/bCLV6rCZ2T9DtXakEhz8pPC4/2Hq7XSkWf74EDBxb9c16TeWevu+46u+222yJ5J5kEAQQQQAABBBBAAAEEEEAAgWwBAhS8DwgggAACCCCAAAIIIIBAQgL19fW2bNky27lzZ0JXPP8y2sQ/depUy7f4e/ToEck69C11jbAVLCJZRMBJkgpQyDzbJ5+518Ij1+2orYcqNyhMocoNfTLtNQoamW/zZyZrf4pMlQjbs6egy/gJTngXyGeg44oRpEjqnSkIOuvkM2fOuNYnBb8j/ztnMczbsrjpppvs0UcftREjRkRFxTwIIIAAAggggAACCCCAAAIItAgQoOBlQAABBBBAAIEiC5zLXL9LkdfA5RFAAIHkBK688krbt29fZJuaflaeXf2gZ8+elm8T38+c2cdoY1XfUo9qozbo9cMcn8RmuK7RtWtXFyzxa+5nXb/5zW9syZIlrqWHwhTz5s0LQ/A/56h9x5gx7vfMn9wvDcUyhv3v75kLmbVRKcLvRdtr19HWHEEqPSS1qR9VNQe/ZlEcpyozcX3eGxsbXRCrd+/eVlFREcVyfc2hd19tkPbv3+/reA5CAAEEEEAAAQQQQAABBBBAIKgAAYqgYhyPAAIIIIAAAggggAACCBQgMGvWLJs8ebJV6Vv9MQ9VPlCwoXv37ta/f/9YrxZk0zvWhficXBux5eXlvoMNPqd1hxXSHiWI48GDB23+/Pmme3kq04ajsrIyyDLdsdu3b7f1mRDGgQMH3H//4n9nUIDiN5lfIzIVLqoyFSoU0lD7kCBDc2t9qhSgtjV+zw9i4K0n7iCFQkj6LMX9OQrim+/YMI755sz+ucxV0UZVLhQSUlgj7qFWNsuXL7cdO3bEfSnmRwABBBBAAAEEEEAAAQQQ6KQCBCg66YPnthFAAAEEEEAAAQQQQKA4AmvXrjVtbKr9QlxDG/gq369NzaSqQhw7dswGDx4c1y1FPm8cbUcKCU54N6g5gm7Sa1NZLT0UUFi3bp2voIJagaiChRec0PW1Af7JT36yxfqnP/2plZWVuYCGhq6hIEW+1glB2nW09WDDGHjzZFdbCerY3ksWx/sS+UvdasK4AxTZl1O4REZxBylUeWXQoEE2e/bsuPmYHwEEEEAAAQQQQAABBBBAoJMKEKDopA+e20YAAQQQQAABBBBAAIHiCLz99tv2xBNP2KZNmyJfQBQb+GEXleRmbdg1Zp+njfampqZIAiZRuod1VMjBC0V4QYe2wjM67q677rJt27Y5DoUmPve5z9k999xjQ4YMuYD2xz/+sT377LP2zjvvuJ9pTs2vihKth7cGVcNQ5YmwIaGwBq2fr9pMRFV9Ja52GFG8y7nmiMIx6PoUpDh58qSr7NKvXz8XwIlyTJkyxRYsWGDXXnttlNMyFwIIIIAAAggggAACCCCAAAItAgQoeBkQQAABBBBAAAEEEEAAgQQFtMl81VVX2eHDhyO5qveNe02mDUttXBZjFGOzttD7/PWvf+2+zR52RBmc8NZQ6Jr0ftXU1LiAhIIM06dPb7k9/WzMmDEtVScuvvhiW7VqVUtwwmv54p2QHahQkOLhhx+2o0ePuh8/lGn7kR2Q2LBhg/s7tabR3/tt19GWfaEG2XNGVRlBa4ojEBD23fNzXpSOfq6XfYz+XVJ7D+/fpaiCFCNHjrRdu3ZFEnwKek8cjwACCCCAAAIIIIAAAggg0DkECFB0jufMXSKAAAIIIIAAAggggECKBG666SZ79NFH87ZCaG/JXnCiW7du1rt376IFJ7w1anNe3/avqKhIkXT7Swm7wayggcITChhEHVgppH1F9t2qrYcCDRr6vbKy0iZOnNhSeULvoKpEaLzxxhstv3RPCsN47Tw+/elP2+233+5aM+jvq6urW0IUCmiMHz/ehTI09uzZU1BwQnN89NFHbuM9yvYbmrfQIEXYd6VYH4YoK6wUcg96nqoE0tzcXHDAS+1mvva1r9nOnTsLWRLnIoAAAggggAACCCCAAAIIINCuAAEKXhAEEEAAAQQQQAABBBBAIGEBbQIOHjzY5s2bF/jKXpWAqFoTBF5AjhPOnDljZ8+eLalvhgfdFJe9filMoF9xjKhbRXiVIUaMGGH19fWmoItadixdurQlEKFwgX5peJUjdJx+aXzyk580BSlmzJjh/nvatGkuROEdq4BGdqWLQly08a+1RB2g8NYUNkhRahVW9OzKy8sjD/iEfbZekELPt2/fvi6gE3SoRY3+3Zs9e3bQUzkeAQQQQAABBBBAAAEEEEAAAd8CBCh8U3EgAggggAACCCCAAAIIIBCNwFtvvWUrV660559/3veE2ljX5qMqHsS1uex7MTkOLLVN5iNHjtjQoUPz3rZX7SOJ0EocG9+tW3e88sorLghy//33t1STUABCQYjs1hsKXKhKxcGDB52RqlYsXrzYtQbZvHmz+7vWrTzyYuY5IKnKCUGDFMeOHXOhp1IZQcNBSd5XUHtvbXPnznUtYiZNmpTkcrkWAggggAACCCCAAAIIIIBAJxMgQNHJHji3iwACCCCAAAIIIIAAAsUX+MUvfmFTpkyxffv25V2MghOq7KBvbMdV9SDvInweUGoBinzrTTI44REr2KC2LFG2QtH7dumll7pLXHPNNa7yhIaqSPTp08dqa2tb2nm0ftQ6Vy069LveQf1SNQq1+njuuefchvbWrVsjqzwic73vSb3r2sw/ceJE3nYsaQ4ktPXxzPdu+/xIx3qYZ693vV+/flZWVtbu9UaNGmWbNm0quE1MrDfF5AgggAACCCCAAAIIIBCpwLnMbF0inZHJEMgvQIAivxFHIIAAAggggAACCCCAAAKRC4wbN87WrFnT5magt3Gvi2pjUVUnSmF0lG/pFyM44T1fBSg0ogwQqI3HnXfe6cITq1atctUjVEVCQ5Un1q9f3+7rdeDAAXeuhgIU//AP/+D+PHHiRPvtb3/rzh8/fnwkr2gc9+9nYV5QKdfnjQCFH8Vwx3ifNwWHcgUpFOBRBZRDhw6FuwhnIYAAAggggAACCCCAAAIIIOBTgACFTygOQwABBBBAAAEEEEAAAQSiFKiurjaFKLI3nks1OOG5lPomczGDE57hmTNnrLm5OdIAhSpIqB3H008/7apHqHXHG2+8YcOHD7df/vKXLkShVhyqRpE9tGmtv29oaLB58+ZZTU2NXXzxxS6EoQoUXisPtflYsWJFJB8PBSjUKqVYoSG9w/IfOHDgeRURSv3djuThxDzJRx99ZI2Njc6/dZBFISC13HnggQdiXgXTI4AAAggggAACCCCAAAIIdHYBAhSd/Q3g/hFAAAEEEEAAAQQQQKAoAlu2bLEf/ehHbuNZm8YqZ6+N4/79+xdlPVFc9De/+Y2rUJCvFH8U14piDlUd0Ho1tHGbBn+FOJqamiJriaF769u3r+nZvPLKKy74MG3aNPvpT39qe/bssREjRrggRF1dnQtJKDCh4f2dAj4KSAwbNsxVsdBG9je/+U2rrKy0H//4xzZnzhybMGGCa+MRxdA6y8vLixag0D14G/n6szbytaGvz2epfDb1DpXSelu/N56/wkQDBgxwn1GFd6677jq77bbbonjNmAMBBBBAAAEEEEAAAQQQQACBnAIEKHg5EEAAAQQQQAABBBBAAIEiCKgiwGOPPWbr1q1zm8WlsjnbHlWx2i+EfXzarFdYob3WAWHnDnte1JvfusdLL73UhQLUekPP6NZbb3Ub7OfOqZvs/wxVm1BAQhUpNBSQUJhCwQlv6L+XLFliM2bMsHvuuaclQFFVVeXCGFEML9RSrAoU2ffgbeTrmailSusKHVHcbxxz6JkrDFRRURHH9InOqfdU7+zcuXPt61//ugv8MBBAAAEEEEAAAQQQQAABBBCIU4AARZy6zI0AAggggAACCCCAAAIItCNw44032ve+972S2ZjN9zC9DedBgwblO7ToP//ggw/cGlTtIG0b4woRRBWo0Wa6KlDoW/xegGLs2LHu3rMDFN4DUbUJnbN+/foLnlGuAIU2td95551InmmU9x7JgjKTpDFo0969qd2IKmeUSiWYfM9J/mp3tH///nyH8nMEEEAAAQQQQAABBBBAAAEEChYgQFEwIRMggAACCCCAAAIIIIAAAuEEZs2aZZMnTzZ9g7+jDAUT1CYirUMb9GfPnnUbzKo8cerUqcjCClHdc9SGXguP3bt3u0oKn//8510Fip///OfnVZjQ+r0WHt7v2fekChUvv/yya+lx8803W0NDg/3VX/1VpC08tPmftgCO3pnevXs7CrV60UhzQCGNhoV8NvSeLV++3Hbs2FHINJyLAAIIIIAAAggggAACCCCAgC8BAhS+mDgIAQQQQAABBBBAAAEEEIheYO3atabN8tra2ugnL9KMR44csaFDhxbp6rkvmx2cyG4PEXVYIYobj2xNmTYxGtfcdZcdyLToePrpp+3Tn/60Pfzww7Zz50733rUOSuQKUHitQPT7hg0b7IorrrDNmze7ShV3ZipQrFixwjJpDMuU8yiIILJ7L2gV55/cek2qtKK/U4uMqCqFRLhcO3HihA0YMCDKKYs6V01NjXvfZs+eXdR1cHEEEEAAAQQQQAABBBBAAIHOIUCAonM8Z+4SAQQQQAABBBBAAAEEIhLQN/ffffddGzx4sF122WUFzfr222/bE088YZs2bSponjSdnLYN8FzBCc8sjd/W99PGQiGGAwcOWH0mJKHf1YZEv1QlYn7m995PPWWWCU1o3Jn5tSHz66abbrLFixfbq6++ao888oirPrFnz57zqlDkClBoXl3zmmuusVWrVrl5q6urXeuOTHTC5usvFJ7IVKeoyYQstKZfZK6vX7qO2nzo17x589ptmeLn3pN+33O9I//93//tKlJ07949VUGKNL7ThTyzKVOm2IIFC+zaa68tZBrORQABBBBAAAEEEEAAAQQQQMCXAAEKX0wchAACCCCAAAIIIIAAAgiYvf/++7Z69Wq7+OKL7c0337RJkybZ1KlTQ9Po2/yjRo2yQ4cOhZ4jbSdq8zYN7Q3yBSc8t2PHjrkwTJpGeyGU7du3uxYaCia0NeZl/jITnThvrM/8112ZX3pvFX5Qi5Vp06bZT3/60wtCFG0FKLzwRM+ePe3222+3e+65x1VguPXWW911TmZ+ZdedqM/895hWa1C4Q++7ftc1xo8ff0H7EJ2StgCO1pQvkKBQ1cmTJ02tUmRUzKHqGAp1pK0NSiEmI0eOtF27drUbvClkfs5FAAEEEEAAAQQQQAABBBBAIFuAAAXvAwIIIIAAAggggAACCCDgU+Dee+9137q/+uqr7ejRo7Zw4UK3ET127FifM1x4mDakVZq+qqoq9xwfZ37UNfQlEj3x9OnT7nq9evVK9LrexRScOHPmjNtAzm7VkWsxaWw5kmvDXhUgFGbwxvTp010YQRUeNA5kqlEMGzPmvDCDd+ylmT/8IvNLFSC+9KUv2Xe/+13bsmWLCyzo/HXr1rl3MDtAoZCG/lvX1VAAY+vWre7PXvWJysyf69vArc+sbUSmCoYXnFBFCs3V0NDgjta1NJd+nj3SGKDwG7JRkELvv979YgUp9O6fPXu2w4QN9N587Wtfcy1nGAgggAACCCCAAAIIIIAAAggkIUCAIgllroEAAggggAACCCCAAAIlJ6CAhIY2jb3x+c9/3m36epuju3fvto0bN9oLL7wQ+v60OagKCNrY7ghDbQ2ampoS38DVxrW3eR0kvFEqG/aq3nDppZe6Kg4KPKxYscImTJhw/iuzfn2m1IRqTVw4Mj9xVSg0skMUzz33nGnjX0Pz9u7du+XPqnbhjc997nOu8oXe/Tlz5rjqFRp7Mr+q2rqgAkGZ9iCth4ITClHoWpqv9Xt/4sQJGzBgQKo+CkHfkWIGKRQg0jPyEx5KFXKOxdTV1bkWKQqZMRBAAAEEEEAAAQQQQAABBBBIQoAARRLKXAMBBBBAAAEEOrZACX0zvGM/CO4OgegEtAF6xx132OjRo+2+++5rmVgVKFRxQm03vKHjdMzw4cNDLeCtt96ylStX2vPPPx/q/DSelK/lQZRrVmBD16uoqLD+/fsHnjro5njgC4Q4oa2qGEuWLLH1mYCEqkK88847NmLEiAtnzlR4sMxxbY3fZP7ymsyvX2R+aYN96dKl9ulPf9ree+89U4jixz/+cUuQwjv/k5/8pAulqGXHzTff7P6cHZ6Ynjlwfa770/oy62xreC1B9LOf//zn57XyKKWKIPkebTGCFGl8n/M5tffzuXPnumolapfEQAABBBBAAAEEEEAAAQQQQCAJAQIUSShzDQQQQAABBBBAAAEEEMgpcC7zky4p81m9erWrPLFq1SoXbPCqUKjihH4tX768ZcWvvPKKqcR/2G9Ia0N8ypQptm/fvpQphF+O35YH4a9gpuBEY2Oj+3Z6mOCEd219Y19VF8rKygpZTqTntvbLrj6hVhvZbTzOu3A7FSh03IHML4UovOFVovD+WyGKV1991QUp1FpGQYsrrrii5fj777/f3njjDfffaryheMSwXHc+frzZtm05XVRNQ+++QiFqReKNJN6dIA/ro48+slOnThX0jsnz5MmT1rdv39hbe3S0AMXIkSNt8+bN54Vsgjw/jkUAAQQQQAABBBBAAAEEEEAgqAABiqBiHI8AAggggAACCCCAAAKJCWjj0WuXkdhFMxf6h3/4B1O7jscff9xd1qtCobYeCxcudAGK7FDFu+++6/4+7Bg3bpytWbOmw2wSxrmJG1VwwntWCicohKEKFmkZrdtYHDhwwMaMGeOWp434nCMTSMj0+Wj3NrZlKkPcpeMyQ/futeYYMmSI+7tnn33W/a6qE95QqEJ/r/e/T59MdCJznppztFED4/+unQl6ZJIeOdei4MRdmXYjCoMoFOKNJKuX+HneUbakUVjn7Nmz1q9fv9habMT52fPjFeUxCtgoyLN///4op2UuBBBAAAEEEEAAAQQQQAABBNoVIEDBC4IAAggggAACMQuk8bvlMd8y0yOAQCQCBw8edNUesltoRDJxgEm0YTx16tQLqlBs3LixJUShkMVll11mt956a4CZzz+0urraFKIYr2/td4ARxyZu1MEJj1ltKTR69eqVGvnWfhs2bHBBA1VqUPCg3dFOG49MQsdszx47mKmo8FDmuG2ZChEKRChIoXYdaumha2soWKE/Kzyhz4E3tI4VK1ZYn5qaTP+OHGtRO5tM6KO9oVDINddc40JDauPhjTjenUIerN6Pbt26RRqwUZDizJkzNmjQoMiDFGkLoBRir/deLV0eeOCBQqbhXAQQQAABBBBAAAEEEEAAAQQCCRCgCMTFwQgggAACCCCAAAIIIBC1gKo3/OxnP7PRo0fb4MGDz5v+jjvusBdeeCHqSwaar3UVCp28detWe/nll908WnfY9h3eQl577TXbsmXLed/ED7TIlB0cZVWHuIITHlmUFQaiegytN8G1kTx//nwXsMkboNAinnrKbMkSVymiZVRVWeYFy/TcGNbyVw0NDZlDn7L6+noXomhreAELBSfU8mNEpoJFy1CIQtfKHmrHob9TpYp2hqoLqI2H5nvnHTUD+Z+RtgCAwg6qgtOjR4+oHq+bR61B1IJGQxUpomgho3dZVXsKaWkT6U0WOFlN5v267rrr7LbbbitwJk5HAAEEEEAAAQQQQAABBBBAwL8AAQr/VhyJAAIIIIAAAggggAACMQioyoQXUhie+eb6qFGjbOzYsW7TUn+vP+vvizWy23b813/9l1100UUt7TuiWpM2sFevXm2bN2+OasqizqNv16tVgWv3EHJoM1jf/v/d735nXnuJkFPlPS1tm/at16P3Qy08qjIhiD2ZChK+R6bKw8TMeb/IhCO2Zqo8qNpDW0PhCVV80XVUlUJD19Lzq6ysdCGHXM+yJtOG40CmEoXCFRMyIY/sgEZ769R1Jk6ceME9pf1Z+Lb3eWCUQQo9x/Ly8sjDHj5vJfLD1L5D1SfOC+1EfhUmRAABBBBAAAEEEEAAAQQQQOB8AQIUvBEIIIAAAggggAACCCBQVAEvoPDMM8+4lh379u1zm7leaEJVKYrZxkM49957r/tm98UXX2zTpk2zq6++OnKzkSNH2q5duwoKHUS+qAImDNuKQcGJU5kWE127dnVtNaL+5n9bt5S2TfvWdmp3obCBqjao3UWuIETre/OCF63bZLT3WJeockVm1NbW+nr6dXV1rjpG0HCHztG5qoCh8IU3wr43vhYb4qCk1hNFkCJt73EI7pZTFAZRW6P9+/cXMg3nIoAAAggggAACCCCAAAIIIBBYgABFYDJOQAABBBBAAAEEEEAAgagFFi5c6NpgXHbZZW5qNHXOLQAAIABJREFUhRXUJkNBCo3ly5dHfUlf873//vtuI1lhjrgrYcyaNcsmT57sNqI7wgiz8ax2CapcoZYGSQQnPOe0bTzLoXUbhmuuucYUpFAbD69KRHvvicIWarvhtenIDim0d17QAIXXikNz6jM7YcKEvK9vdrBDLUlU5cIbbd173gljPCDMe1zIcgoJUiS91kLuM9+5em/17/6OHTvyHcrPEUAAAQQQQAABBBBIUODjzLW6Jng9LoUAAsUQIEBRDHWuiQACCCCAAAIIIIAAAucJvPLKK+6/b7311lTJqDqGhipPxD1eeukle++993x/8z/u9RQ6/7Fjx0zVQ/yMYgUnvLUdOXLEhg4d6mepiRwjj969e1tZWZmrOrF27Vq3kaxgkf5boZ6HHnoo51p0jFp+6HcNBRayQwrt3UTQAIXm0jmqJKGqAe+88067LRcUAtHadKzGn//5n9uyZctcVQ2FB1R9pHV4JBH0HBcp1rshi+PHj1u3bt1s0KBBvgg6UoCipqbGrrjiChesYyCAAAIIIIAAAggggAACCCCQpAABiiS1uRYCCCCAAAIIIIAAAgi0KaBKD6tXry5apYk0PBZtcitEsWbNmjQsp+A1+NnMLXZwwrvJtFWgULhAAZTvfve7rq2Lqk6oQomqUOhn+jV9+nQXWujTp895zyq78oR+oIoQqgzhd4QJUKhSjFc5RWvLVYlC77hakXjhCVXS+MlPfmJbtmyxGTNm2O233+5CI2kKUPh5j/3ahjlOLW0aGxute/fueV2KvdYw95frnClTptiCBQvs2muvjXJa5kIAAQQQQAABBBBAAAEEEEAgrwABirxEHIAAAggggAACCCCAAAIIxC+gTeVRo0bZoUOH4r9YAlfQ/fTs2dNtiLceaQlOeOtKW4DiBz/4gX3729+2q6++2mbOnOmqM2jIVNUbVMVBQ+EJBSlGjBjh/lsBhQ0bNrg/6+/0c4UZWocs2nv8YQIU3rUVjvDWqYoXClVo7Vr39u3b3fo09HdqL6JKGt7xTz75pL311lsuSKGqFGkZaQklNDU1uVDNgAED3Oeq9VDQQhVK0hQ+KeQZXnnllbZv375A724h1+NcBBBAAAEEEEAAAQQQQAABBDwBAhS8CwgggAACCCCAAAIIIIBASgT0DXyVrPe+zZ+SZYVaxunTp915vXr1ajk/bcEJb2FpCVAoGDF58mTXuuCZZ56x8vLyCzaQFUZQSELVJ7wWHQpIeFUddE8KT8yfP9+FK4KOsAEKXUfrUesF3Yf+nL0uhSb0d6qIsWLFipZQiLc+vRv6+dKlS919KzgyevTooMuP/Pi0vBvejSkkoc+WPlfZQQo9f1WpqKioiNwg6Qn1/jz22GO2efPmpC/N9RBAAAEEEEAAAQQQQAABBBAwAhS8BAgggAACCCCAAAIIIFAyAto8fPfdd916Va2ho42vfe1rNnjwYJs3b17J39pHH33kWg8MGjTIbfhqg1cb6tmBirTcpNamTfsePXoUZUkKDqxdu9b279/vggMK0mio6oDW1q9fvzbX1tDQ4EIHXkUKhRRU+cGrSBHmZgoJUHjX05qz1+ZVw1ArktbVMLwWFdn3+Oqrr5rW8alPfcr++q//+oKwRZj7CnNOmqs6tA5SKOghw7YqvoS592KeU1dX58IgCpMxEEAAAQQQQAABBBBAAAEEEMgl8HHmB11j4CFAEQMqUyKAAAIIIIAAAggggEB0AtooVCl3/dq7d69ddNFF7pvXL7zwQnQXSclMamGwcuVKe/7551OyosKWkV0hIUgbicKuGvzstqplBJ8l3BkKCmzatMmmTJnS0tKi9UyqzqCRRHuGKAIUfiV0X83NzS5k03oohLFx40bX+kPBi2nTpiXezuHMmTNufWkM/XheXpBCgaVPfOITfulTfdzcuXNdFZ5Jkyalep0sDgEEEEAAAQQQQAABBBBAoGMKEKDomM+Vu0IAAQQQQAABBBBAoKQFjh496ipN7N692w4ePOiqMgwfPtzGjh3rfn/ooYds6tSpdtlll5X0fbZevAIH2khXWKSUh1dVQBvQpfCMtM6zZ88mukGv9gSqOjFy5EhXdULVI9obnqmCKKqWEddIIkChe/FaY+Sr+qHPxLe+9S2rr6+3BQsW2Je//OW4bv2CeYtdmSTIjR4+fNhVn2jd2iPIHGk5Vp8JfT7yfSbSsl7WgQACCCCAAAIIIIAAAggg0LEECFB0rOfJ3SCAAAIIIIAAAgggULICbYUmRo8e7Vp1KDSRPfSta1Wh6Ihj3LhxtmbNmpLcPPQ2+VV+X9USvE3ytD8nfXv/1KlTiVR4UCDg7rvvtuPHj7tKI0HbbchUI652DXEHKE6cOGFdunQJbK3qMwqcqK3JnDlzXKuSuIcqZPTu3bsk2mJ4nzWtWYEgVfXIF06J2y/M/Pp8qIWN2tkwEEAAAQQQQAABBBBAAAEEECiGAAGKYqhzTQQQQAABBBBAAAEEEDhPQBUltEGqagVelYlSqFwQx2Osrq42hSjUtqBURuvghLduberGtdEftc0HH3xgQ4YMiXralvm0MawAwJtvvukCANokDjsU+FAAI45qA3EFKLxWE3ofCtnYV7joiSeesC996Uv21a9+NdaqIaUUAGpsbDyvFYqCFKqqUqh32Hc07HkbNmywI0eO2AMPPBB2Cs5DAAEEEEAAAQQQQAABBBBAoCABAhQF8XEyAggggAACCCCAAAIIRCHw+OOPt7ToyDXf1q1b7aKLLnIBi448XnvtNduyZYutW7cu9beZKzjhLfz06dPuj9roT/uIM0CxdOlS2759uwvGTJ8+PbLqIgolqNpAlCGVqAMU+d6RMO+FWmts3LjRXn75ZffvgQIpam0S9YjznYhyrbla0HhBm27dukX6jkS59tZz1dTU2Kc+9SmbMWNGnJdhbgQQQAABBBBAAAEEEEAAAQRyChCg4OVAAAEEEIhe4OPMlF2jn5YZEUAAAQQ6rsDBgwft3//9323ixInuJtXOQ+0Ndu/e7YIVCxcutH/5l38xfTt50qRJLcd1RJH6+npbvXq1bd68ObW3522Ka4HnV204l/mbLi3rzrWxm8YbO3bsmA0ePDjSpekZ1tXVWVVVlc2cOTOy4ET2Ir1N8vLy8khCBFEGKFQFobm5ObbNe1X1UBUK/XuhEJZa/kQ54ngnolyfN5ec1dIoV2UPvSOqUKERZdgmjntRZRZVnwja2iaOtTAnAggggAACCCCAAAIIIIBA5xQgQNE5nzt3jQACCCCAAAIIIIBAqgWWL19uP/vZz2z27Nm2b98+e//9901/p41ShSleeOGFVK+/0MWNHDnSdu3aFcmGeKFryT5fwYnsqhJ+WjGUShuEKDfLtbG/bNky27Nnj3tvb7755igfQ5tzqRrFyZMnXRsHP88l14KiCFB4AZuk2keo/c83vvEN+73f+z2rra11oasoRqm8u34rZaQ9SKHKIqNGjbJDhw5F8fiYAwEEEEAAAQQQQAABBBBAAIFQAgQoQrFxEgIIIIAAAggggAACCMQp8NBDD7mNNK9dx7333mv6u4svvtjuuOMO0ybvZZddFucSijr3lClTXMUCVS5Iy9BmsldNIMgGvd/N3WLfZxSb5QpOfOtb37J//ud/tnnz5pm+TZ/00H2oZUP//v1DXbrQAIWur6EgR9Lj6aeftrVr19r48eNdZYpC23pE8U4kYRB0nWkNUjQ0NNiaNWts06ZNSbBxDQQQQAABBBBAAAEEEEAAAQTaFCBAwYuBAAIIIIAAAgggkC6B8zsApGttrCYxAbXuUFuP++67z13T++/LL7/cVq1aZVu3bnUl6zvqeOmll+y9995z36Yv9lB7gLNnz7rS/0GCE966SyVAUeg6vXYdn/nMZ+wrX/lKLO06/L4LhVSACBug0DU9wzDvid97y3ecqhgoxPLyyy+7ENKcOXPynZLz54W+E6EvHPDEsOv02r/ocgMHDrSysrKAV4728JqaGrviiitc5SEGAggggAACCCCAAAIIIIAAAsUSIEBRLHmuiwACCCCAAAIIIIAAAu0KKCShEIUqTeh3/brooots0qRJNnXq1A6tV19fbwpR6NvYxRqFBie8dYfd3E36vnW/vXv3DryJ/Oqrr7q2MmPGjLFFixYVNTjR2syrBqHwi9/N8TABihMnTliXLl1CV72I41nr3wvdi0IC999/v40ePTrQZXTeqVOnUnVPuW6g0M+YF7jp3r17Ue9XlXcWLFhg1157baBnxcEIIIAAAggggAACCCCAAAIIRClAgCJKTeZCAAEEEEAAAQQQQACByASOHj3qNqaPHTvmNj+zW3pEdpGUTqRv0et+Dx06lPgKowpOeAvXvWhjtqKiIvF7CXLB06dPu9YXftepdh1qF/Hmm2+6KgfFaNfh5/4UBNAGe9++fX1VbQkSoDhz5owLGYStTuJn/YUes3fvXlfJRu1/nnzySd8BF4UKmpqaCm4DUuj6852vdX744YeRBB+8KiK9evWKZL58a2/985EjR9quXbtSbx70vjgeAQQQQAABBBBAAAEEEECgtAQIUJTW82K1CCCAAAIIIIAAAgh0GoF9+/bZxo0bbfny5b42fjsajDbkVcq+qqoqkVuLOjjhLVqb7M3NzaZN2TQPv+tUcGLDhg32j//4jzZ27Fh78MEH03xbLWvTJrvuMV81Cj8BirRULPALrxDP008/7VoBqYLNtGnT8m7SBw3U+F1L1Mfp3srLy0O118m1Fr0run99ZpNqlXTgwAF77LHHTK1wGAgggAACCCCAAAIIIIAAAggUU4AARTH1uTYCCCCAAAIIIIAAAgi0K6AQxdVXX53YJl6aHoc2E1UNYd68ebEuSxulCk/0798/tpCDWkkMGjQo1vsodHI/3+TX5m5dXZ0LtcycOdN3NYNC1xbV+apG0djY6N6rXBvj+QIUelcUiMkXxIhqzVHOo7DB4sWLTW1X9Plqr2qI7lNGPXr0iHIJkc+lz1ZczyLJIIU+V6pUo9AYAwEEEEAAAQQQQAABBBBAAIFiChCgKKY+10YAAQQQQAABBBBAAIE2BfRNcf362c9+5krvazz00EMtf+4MbG+99ZatX7/eVq1aFcvtJhGc8BZeCgEKrVWtLoYMGXKBt74dP3nyZPvEJz7h2nYMGzYslmeS1KTaGD958qQLtbQOCOQKUHhVJ9LcrsOvX0NDg6tIoaGAkloEtR6l/s76tfBzXBJBirlz57pgkiqEMBBAAAEEEEAAAQQQQAABBBAopgABimLqc20EEEAAAQQQQAABBBC4QEBBiYsuusi1Rxg+fLj7+dGjR+3555+3++67r9OIqVXElClTTFU4ohzFaL9w5MgRGzp0aJS3EctcrTfN9QwUmNi/f7+rONFexYJYFhTzpLrfbt26ueoj3mgrQKFqDOfOnbMBAwbEvKJkp3/xxRftiSeecBv3X/nKV84LxhCguPBZxBmkGDlypGvfUerhpGTfYK6GAAIIIIAAAggggAACCCAQhwABijhUmRMBBBBAAAEEEEAAAQRCCSgscPDgwQvKuGvjbuHChfbMM8+0Oa9+vnXrVps6dWqo66b1pHHjxtmaNWsi2VQsRnDCc81V2SFt7seOHbPBgwe7ZSlIIPtZs2ZZbW1t2pYa2XpaV5bIDlDoZ96zS3sri7Agauvxne98x7Zv327jx4+3u+++2/r06WO5AxQfZy7VNezlIj+vGJ8tBWpUwUbVWqJ4LxRUUjhJQSUGAggggAACCCCAAAIIIIAAAsX+v7wJUPAOIoAAAggggAACCCCAQGoEFKBQtYlbb721ZU3679WrV9uIESNs4sSJOdd6xx132AsvvJCae4liIdXV1aYQhTZ2w45iBie8NWvDtXfv3lZWVhb2NhI5T5Uy/umf/sm1d/jsZz/rqk50lm/E6xk1Nze7z5rGnDlz7OOPP3ZtPjrD0Cb+3/zN35jatTz88MP2x3/8xy1hmrTe/0cffWSnTp06r4JIkmvVO3P27FkrtK3Lhg0bTJ+9Bx54IMnlcy0EEEAAAQQQQAABBBBAAAEE2hQgQMGLgQACCCCAAAIIIIAAAqkSuPfee1tad6gahYYCFWrp0Xq8//77tnv3ble1Qn9WhYrLLrssVfdTyGJee+0127lzp61cuTLwNGkITniL1rfVNXr16hX4PpI6QRvoqkTwgx/8wLXtUGCnsw29M/fff7+77aVLl0ZSXaDUDPfu3Wvr1q2z3//937fPfe5zVllZmdpbUOWdrl27WkVFRdHWqBDH8ePH3fUHDhwYKiS1ePFiF1SaMWNG0e6DCyOAAAIIIIAAAggggAACCCDgCRCg4F1AAAEEEEAAAQQQQACBVAloU1CVKDSuvvpqu/jii89bn8ISXmhCLRdGjx5to0aNavPYVN1YiMXU19e7igCbN2/2fbYXnNAJKrGfhqFN1sbGxlRWM1BwQoEJWX/96193lQe0Id2zZ8800CW2Bu8ZLVu2zF1z0aJFrrJA2quGRA3U1NRkauvxd3/3d/btb3/bvvSlL9lXv/pV19YjbSNNlV2890dGQd8bte9Q9YnOGFpK2zvFehBAAAEEEEAAAQQQQAABBMwIUPAWIIAAAggggAACCCCAQCoFHnroIVM1CgUoskMTClgoNKFfClh09I3ukSNH2q5du/Ju4Co4oUoParugdhk9evRI1XP94IMPUhPo8GDUquPFF19075JaVnjtOrzWBGkJoMT9ILNbMXzzm990l3vwwQdd6KUzhUlOnDhhXbp0aWmJoSDFxo0bXWWbL3/5y84kTSONn6mgQQoZKwB36NChNNGyFgQQQAABBBBAAAEEEEAAgU4sQICiEz98bh0BBBBAAAEEEEAAgTQLqMrEK6+8YkePHnUhieHDh7dUm0jzuqNe26xZs2zy5MlWVVWVc2ptpGrom99pC054iz5y5IgNHTo0ap5Q86mixyOPPGK33HKLzZw5syU4kT2ZV8kjzaahbj7rJO8e1VrFCyItWbLEHVFbW+t+V2Dp5MmTLvzSUatRyOFXv/qVXXLJJW1+flSlRFUodMyKFSvcv0NpGL/+9a9TWdVFNn6DFA0NDbZp0yZbs2ZNGkhZAwIIIIAAAggggAACCCCAAAJUoOAdQAABBBBAAAEEEEAAgXQKKDjx/PPP29ixY114orOOl156yd57772WDe1sh+zKAWkNTnjr1Vr79+9f1MfotevYunWrqcKJWgfkG1p3c3Nzajeq860/1891X+fOnbMBAwacd0jrAIV+mL0ZPmjQoLCXTOV5QZ7v3r177b777nNVcZ588sk2gzdJ3mQaK1C0vn+9O8ePH3d/PXDgwAtCODU1NXbFFVfY7Nmzk6TjWggggAACCCCAAAIIIIAAAgjkFKACBS8HAggggAACCCCAAAIIIJBigfr6elOIIvsb2qUUnPBo9W15VXMoRhUDBSfkp2+7T58+3VTVI8hoamoytRpoawM4yDxpOFbVFryN97ZCN20FKLx1ew4doSpHIRVG1PpFv774xS+6yhR9+vRJ/NF6oZZSCbTIW/8GqCVMdpBqypQptmDBArv22msTN+SCCCCAAAIIIIAAAggggAACCLQlQICC9wIBBBBAAAEEEEAAAQQQSLGANu7HjRtn+/fvt1IMTni0p0+ftm7durkN1CSH2nXU1dW5DVpt1A4bNizU5b0Na63fa3cRaqIinqQNbI32Nt3bC1B4Sw9StaGIt5vz0gqC6H0sJNCjz6WqUGzfvt21gZkzZ06it3rmzBk7e/ZsUcIbhdyoF+BR2xgFKUaOHGm7du0qufsoxIBzEUAAAQQQQAABBBBAAAEE0i1AgCLdz4fVIYAAAggggAACCCCAAAJ2zz332J/+6Z/aF77wBUt7q45cjyvpDd8333zT/uIv/sL+8A//MNJ2C9o41wb8kCFDSubNDFJtwU+AQjfuVRTo27dvSQVKTpw4YV26dImsnczBgwdNZr/97W/twQcftNGjRyfyXijEoiBPqf578OGHH9q+fftsy5Yt9uyzzyZixkUQQAABBBBAAAEEEEAAAQQQ8CNAgMKPEscggAACCCCAAAIIIIAAAkUUWL16tfu2+bx58/Kv4uPMIV3zH1aMI7zWEXFeW+061q5da2p9Iq/bb7898ssFCSREfvEAE3pVM1T5I7ttQntT+A1QeHN4gZK0tzfJ17okAGubh+7du9dqamps8ODBtnLlytCVTvyuQ9VESqV9R657UmWY7t272+zZs/3eNschgEASAucyF+mSxIW4BgIIIIAAAggggAAC6RQgQJHO58KqEEAAAQQQQAABBBBAAIEWgbfeesvWr19vq1atKmmVOAMU2sjXhqxadig0UVtbG7tVmltZhG33EjRAIeS0tzdJ6jnpHVyzZo39/d//vU2aNMnuvvvu2FpTdIQAxdy5c62qqspZMRBAAAEEEEAAAQQQQAABBBBIiwABirQ8CdaBAAIIIIAAAggggAACCOQQUFWFKVOmuJL3pTziClAoNKHwhDZjZ86cGfu3/7Ofgdp5aOM8LRUYvOoYvXr1CtVaI0yAwvNQW4bTp0+nzqJfv36JtrrQ+7B48WJ79dVXXZBn+vTpkX9sO0KAYuTIkS7wNGzYsMh9mBABBBBAAAEEEEAAAQQQQACBsAIEKMLKcR4CCCCAAAIIIIAAAgggkKDAuHHj3LfbS3mzMeoAhYIlt9xyi3sKO3bsKJpNWiowqNLCuXPnbMCAAaHfzEICFLqoLI4fP25qG1LMFhMKc5w5c8YUnigrKwvtUciJauuhYI+G2smMHj26kOnOO7fUAxT67M6aNct27doVmQkTIYAAAggggAACCCCAAAIIIBCFAAGKKBRTMgctClPyIFgGAggggAACCCCAAAL/K/D+++/bZZddFolHdXW1KUQxfvz4SOYrxiT6Zn737t2toqKioMtr83Xt2rX2+uuv24IFC1zLjjQM3Z8qUgwZMiTR5ajqhLeh3qNHj4KuXWiAwru4V5kj6eoPuv6JEyesS5cu1r9//4Isojr5xRdfdBUpbr75Znv44YcLbuuh562ASFruL4zThg0bXLWSv/zLvwxzOucggAACCCCAAAIIIOAEPs786ooFAgggELEAAYqIQZkOAQQQQAABBBBAAAEEEDh48KA9/vjjLvAwderUSEBee+0127lzp61cuTKS+YoxiSoCNDc3m9pLhB3a4H/55Zdt0qRJ7lv9ffr0CTtVLOdFGWbws0AFJ2QaVWgjqgCFt3ZVxdBIYrNf9l6Vk0KDJH7sgxyjcM13vvMd9+7+2Z/9mau+EPbdjSqIFGT9UR+rQMlVV11lt912W9RTMx8CnUiAr1J1oofNrSKAAAIIIIAAAggkKECAIkFsLoUAAggggAACCCCAAAIdW+Do0aO2fPlyd5MLFy60iy++OLIbPnDggD322GO2efPmyOYsxkRhWw/ovp944gm78cYbbebMmUVr1+HXTMEBBRviamMRV1Aj6gCFvLTWxsZGFxgoLy/3SxjoOL1XGnF5B1pMOweresrcuXPtP/7jP1wYKkxbD91rMVuTRGGhqjEPPPCAjRgxIorpmAMBBBBAAAEEEEAAgU4qQKCykz54bjtmAQIUMQMzPQIIIIAAAggggAACCHQeAVWeqK2ttW3btsVy0woPfO973wv9zfVYFhVwUgULglQj0IbzV77yFfvpT39qf/u3f2uf/exnA16xeIerjYXaSag6RFlZWWQLibNFRRwBCu/GvWoZAwcOjMzDC2cUo1VIIQ907969LhCkoUoqlZWVvqfzqmz4PiFlB6qCxqhRo+zQoUMpWxnLQQABBBBAAAEEEEAAAQQQQMCMAAVvAQIIIIAAAggggAACCCAQocAdd9xh06ZNc9UnVq1aZapKcfnll9tDDz1kPXv2LOhKKvs/efJkq6qqKmieYp585MgRGzp0aN4lKDjxrW99y/75n//ZbTDrG+ulOD766CNXfaGioqLg56+NZ4Uy4gwLxBmg0POTx/Hjx10bl0I/Dx9++KGpLUx71RjS3hP56aefNv364he/aF/96ld9haNKPUDR0NBgmzZtsjVr1pTiR5o1I4BAWwJ8+ZX3AgEEEEAAAQQQQKADCRQ9QMH/vu5AbxO3ggACCCCAAAIIIIAAArZ7927buHGj2xz2QhOPP/64++/77ruvIKGXXnrJ3nvvPVflolSHn83furo616pE38pXaGTYsGGlerst6/bCD6pGEXR4VRa6d+8eqHpH0Ovo+LgDFN6a/IQf2lt/nFU4wrgVco7eje985zv2zDPP2PTp0+3BBx9sdzo/n6FC1hP3uTU1NfYnf/InLgzGQAABBBBAAAEEEEAAAQQQQCBtAkUPUKQNhPUggAACCCCAAAIIIIAAAoUKLFy40PRLVSg03n//fVuwYEHBrT3q6+vt+9//vi1fvrzQJRbtfLVxyFUxQKGJRx55xP70T//UqqurO0RwIhtaQQjd/6BBg6xHjx6+noFanpw7d85VJoiyDUiuiycVoND1vWoU5eXlviov6BwZegECv4a+oFNwkKquqArFr371K1uxYoWNHj36glXJ7NSpU7EHaeLkUChq5syZdu2118Z5GeZGAAEEEEAAAQQQQAABBBDozAIFlKQkQNGZXxzuHQEEEEAAAQQQQAABBBIRiCpAoW+qjxs3zvbv35/IuuO4yOnTp920auHgDW0cr1271nbs2GFf//rXS7Zdh18vhSKam5tdkCLX8KpOxNmuo61rJxmg8K6vahQnT57MGyxR+ESjPTe/zyDNx+3du9dUpeGSSy6xJ5988rwgkVqWaKglTKmOkSNH2q5du3yHZkr1Plk3AggggAACCCCAAAIIIIBAaQoQoCjN58aqEUAAAQQQQAABBBBAIOUCW7dutYsuusgGDx5sauExadIkmzhxYsGrvueee+yOO+6wqqqqgucqxgT6Bn1jY6PbBFdwYs2aNdbQ0GDFjOkiAAAgAElEQVRf/vKXbc6cOcVYUlGu2dTUZGpDoZYerStLFDMoUIwAhfcAdN/dunW7oLpCscIkRXkxsi76jW98w1588UW79957bdq0aS5woPBN7969E6lGEsf967O+atUq16KHgQACCCCAAAIIIIAAAggggEAaBQhQpPGpsCYEEEAAAQQQQAABBBAoeYF9+/bZ7t27XYhi6tSpLe08Cr2x1atX29mzZ23evHmFTlW089WC4Y033rC6ujr7zGc+Y1/5ylc6XLsOP7hemETVBHr27JmK9hTFDFDIzAtLKCyg1h6qTqGqC7navvhxLuVjVHVGVSi++93vus/8rbfe6kI3pTr0me/evbvNnj27VG+BdSOAAAIIIIAAAgjEJXAuM3GXuCZnXgQQQMC/AAEK/1YciQACCCCAAAIIIIAAAggUXeCHP/yhvfzyy+5b3GkZQf7/XG+++aa99tpr9q//+q8XtCdIy/0kvQ5tkqv6Qv/+/S+ovpD0WoodoPDuVx5q96JWLx29ZYefZ6zKDU8//bT9v//3/+yqq66y0aNH+zktdcdUV1fbDTfc4CryMBBAAAEEEEAAAQQQQAABBBBIowABijQ+FdaEAAIIIIAAAggggAACCOQQUNuLKVOmmCpclNLQuteuXWuvv/66LV682EaMGNFm+4pSuqco1qoKCwoKqAKFghQKC/To0SOKqUPNkYYAhapQqEqJLNSyom/fvs6nMw/P5N///d9t4cKF9kd/9Ef28MMPl1zllhtvvNGeffbZklt3Z373uHcEEEAAAQQQQAABBBBAoLMJEKDobE+c+0UAAQQQQAABBBBAAIGSFxg3bpwtXbrUhRDSPhQKUNn+5557zmbMmGG1tbVuyWpfcfz4cdeaoZiBgWL5ea0q1M5AlSe8ocBAc3Nz0aouFDtAocoTGtlVJzp7Gw+9K6dOnWppY6LP1He+8x1XiUaVHO6++25Ty5O0D4WoZs2aZbt27Ur7UlkfAggggAACCCCAAAIIIIBAJxYgQNGJHz63jgACCCCAAAIIIIAAAqUpcP/999uVV15p06dPT/UNbN682bUd+OxnP2szZ85s81vn2jDv1q1b0VtXJAnphSQUHikrK7vg0k1NTXbixImiVOgoVoDCC5TkCtR4gZvy8vKSCAtE9T61F6hRIOFb3/qWqS3OvHnz7Mtf/nJUl41lng0bNtiRI0fsgQceiGV+JkUAAQQQQAABBBBAAAEEEEAgCgECFFEoMgcCCCCAAAIIIIAAAgggkKDAa6+9Zjt37rSVK1cmeFX/l9LG7q233mq/+93vbMeOHXnL9XsVBrKrDvi/WukcmS8kkH0nCgw0NjZaRUVFou0rihGgCFJhQsd64ZKOXrlE96mATb7qEnv37nVVXjQUpBg9enQqPxRq3XPVVVfZbbfdlsr1sSgEEEAAAQQQQAABBBBAAIHiCXycuXTX4l3+vCsToEjJg2AZCCCAAAIIIIAAAggggIBfgQMHDthjjz1mqvCQpqHgxNq1a9034ufMmWO333677+UpXKBqFEOGDGmzKoPviVJ6oO6ta9euNmDAgEArVLsGVaSQSxIj6QCFQgJdunQJXIGkI1cuUXjmgw8+cG1MgoRE9O+BqjvcfPPN9vDDD+cNXiTxPmVfo5RaDyVtw/UQQAABBBBAAAEEEEAAAQTSI0CAIj3PgpUggAACCKReIE0ZyNRjsUAEEEAAgZgFbrzxRvve976Xmk3Sb3zjG7ZlyxZXeULfgs/3rfm2eMJuHMdMXdD0Cob86le/sksuuSTQZnj2Rb1wSdAN9TALTypAoXtSSEDBkCAhgdYuqtKRq+1HmPsv9jmFBokUuNm4caO9/PLLdtNNN9msWbNCfRajdtC6FKDYv39/1FMzHwIIIIAAAggggAACCCCAAAKRChCgiJSTyRBAAAEEEEAAAQQQQACBZAS0MTp58mSrqqpK5oI5rqJvvat9gNYxc+bMvO06/CxW1QW6d++eio1fP+vNdUzY6gq55vvP//xPa25udpUJ4hpJBCj0fDWiug9vPgUp1PKiVIdCBmfPno3ERdVgvvrVr9rRo0ft8ccfL3pbj+3bt7u2Q2vWrCnVx8O6EUAAAQQQQAABBBBAAAEEOokAAYpO8qC5TQQQQAABBBBAAAEEEOhYAi+99JK99dZbtmLFiqLcmDZo/+Zv/sZ+9KMf2VNPPeW+XR7lSCIsEOV6s+c6c+aMnTp1KpbKCGrnoWBGXK1O4gxQqLpCXBUjvIoWapHSs2fPuB6tz3mDVy2LKzS0d+9eU3WY3/u937Pa2lobPny4z3uI9rCamhr7kz/5Exf6YiCAAAIIIIAAAggggAACCCCQZgECFGl+OqwNAQQQQAABBBBAAAEEEMghUF9fb9///vdt+fLliRopOLFq1Sp78803XauO22+/PbbrexvuAwcOLInKAlqvghPdunWz/v37x+aiVicKIlRUVEQeFogrQOFVV4i7SkRS14nq4epZHj9+PJawTfYan376aVu7dq2NHz/eVaYI02KnkHtWxRxVqLn22msLmYZzEehYAsGzVh3r/rkbBBBAAAEEEEAAAQRSKkCAIvCDOZc5o0vgszgBAQQQQAABBBBAAAEEEIhSQBvFI0eOtH/7t3+Lctp25/LadWgTdMGCBZG068i3eG0w/+pXv3IVF3r06JHv8KL9XBUz1H5BAYGk1vnhhx/a6dOnLcqASRwBiqhbmeR7yHEGTPJdO8jPvaoZSb3b+jfjySefNLXTUJhhzpw5QZZb0LH6t2rXrl2JBzcKWjQnI4AAAggggAACCCAQswA7jjEDMz0CIQUIUISE4zQEEEAAAQQQQAABBBBAoNgC99xzj91xxx1WVVUV61K08fnAAw/YZz7zGVu0aFEiwYnWN/TBBx9Yr169Iq+4UCicVyWjd+/eriJE0kPXV/uHQYMGRRLciDJAEfXagtoqYHLy5MnIbIJev73jtbbf/va3ppYjSQ9VkdHnWMGkxx9/3EaPHh3rEhoaGlzVGgWwGAgggAACCCCAAAIIIIAAAgikXYAARdqfEOtDAAEEEEAAAQQQQAABBHIIrF692lU9UCuNOIY2WlX2//XXX3cVJ+Js1+Fn/aryoBFneww/6/CO0XrOnTtXlE3w1uuMyiaqAIVCHc3Nza5ySDGHV41Ca1DIJA1DNmlYz969e+2+++6zSy65xJYtWxZbMKqurs59ZhX2YiCAAAIIIIAAAggggAACCCCQdgECFGl/QqwPAQQQQAABBBBAAAEEEMgh8MMf/tBefvll9+3uKIeCEy+++KLt3r3bxo4daw8++GCU0xc0V1NTk2tboVYZZWVlBc0V9mRVVtC397XxnFS7Dj9rlc2xY8fcusLaFBqg8CpyJNnKxK+NWlgUe10KT6haSZrem6VLl9qmTZtsxowZNm3atMjbbFRXV9sNN9xgkyZN8vOoOAYBBBBAAAEEEEAAAQQQQACBogoQoCgqPxdHAAEEEEAAAQQQQAABBMILKOgwa9YsU4uNqIbK7D/99NP22c9+1mbOnBnbt9ILWW8xW0OkpXpALj+v4oLaifTs2TMwcyEBCgUUVBElLZUe2rp5VepQZYyk15jW0I1npGf35JNP2quvvuo+9/p3Japx44032rPPPpvKf0uiukfmQQABBBBAAAEEEEAAAQQQ6DgCBCg6zrPkThBAAAEEEEAAAQQQQKATCnzxi1+0r3/96zZixIiC7v7AgQM2depU+8QnPuEqWgwbNqyg+ZI4WWGGXr16WXl5eeyXS2tlhVw3/uGHH7pKHQMHDgxUjSJsgOLEiRPWpUuX1LRXae+F8AI4ffv2DRUyCfqyeVVTkg5tBF2njldbD7Xc0GdKQYrRo0eHmablnDhCXgUtiJMRQAABBBBAAAEEEEAAAQQQyCNAgIJXBAEEEEAAAQQQQAABBBAoYYH777/frrzySps+fXqou9AG59q1a23//v1uw/T2228PNU+xToq7IoRX0aFbt24lEQ7Ifg5hKnUEDVCEuUax3pXW11XVBYUbgoZMgqw/7vczyFqCHKtKFIsXL7Y//uM/tq997WuhA1UbNmywI0eO2AMPPBDk8hyLAAIIIIAAAggggAACCCCAQNEECFAUjZ4LI4AAAggggAACCCCAAAKFC7z22mu2c+dOW7lyZeDJvvGNb9imTZvstttus9ra2sDnp+WEuL7hr3YPaknRr18/69GjR1puN/A6dB8a/fv3z3tukACFwgFqhzFkyJC886b1gEJbnrR3X0lWSInDVwGTjRs32vbt2+3mm2+2u+++2/r06RPoUgphXHXVVe7fGAYCCCCAAAIIIIAAAggggAACpSDw/9u7Hxiryjtv4A9/IoIQkf9sZuPEadxsk5UmTdqstrFkK2zNkhUxNWWhYGxEKAZ3+dPqVoZKoxUhrUEBjd3yL2xsRDQ0bsA2bLMFN5uYFDdp00TMmJICIogBoRqQl99591JAhrl35p57z733cxLSduac5zzP5zlz3817vvf3E6BohF0yRwIECBAgQIAAAQIECHQjEK03Hn/88fTCCy+UbRTnRtWJL37xi1nViUZo19HT4qpZCaHUriPagwwdOrSnWzfE7yNkcujQodTW1nbFlh7lBCgarZ1JORsULU/ef//9LAwycODAci7p9pzw2b9/f2bdyMGb0gKjSs1jjz2W4rMmglYRpij3qFaLoXLv5zwCBAgQIECAAAECBAgQINBXAQGKvgq6ngABAgQIECBAgAABAnUW+OpXv5pefPHFHr8dHi9C582blw4ePJj+7d/+LX3uc5+r88yre/tSNYEIPgwePLhXg0e1hrNnz6ZRo0b16voiX1ROtYWeAhThE1UnxowZU+Sl9mpu4XP48OEU7Vp6u74IT3zwwQe9vr5XE6/RRbt3786CVxHGWbBgQbrllluueOeoYBEBil/84hc1mqHbECBAgAABAgQIECBAgACBvgsIUPTd0AgECBAgQIAAAQIECBCoq8CcOXPSN77xjfSVr3zlsvOI4ES8+Pz1r3+dvv3tb6e77767rvPN++aVtKwozSVefB84cCCrQNAMVQOuZBzVFo4fP55Gjx79qWoLVwpQREuKCBeU0wok7z3Oc/wICMTL/0pbt4RPHL0NX+S5pmqO/eyzz6Znnnkm3XHHHelf/uVfug1uReuPaC8U5zsIECBAgAABAgQIECBAgECjCAhQNMpOmScBAgQIECBAgAABAgS6Efj5z3+efvnLX6Yf/ehHnzrjiSeeyF5iTpo0Kf3TP/1TU7TrKOdBKIUEIhDR0xEvvqOqQjnn9jRWo/y+FBgZO3bsRdU6LhegqGZ7lEbxiXlWUm3jvffeS1dffXXTtHzpaZ8iYLJx48a0devWdPvtt6cIcQ0fPvyiyx555JH02c9+Ngt3OQgQIECAAAECBAgQIECAQKMICFA0yk6ZJwECBAgQIECAAAECBLoR+M///M8UIYqVK1eeP+OFF17IviX+pS99Kd13330tE5y4kKgUEmhra/tUpYU4L35/9OjRiisNNNODeGm1jksDFFGVI45WCpdc+gxFwOa66667bDiilSqXXO65j+o2Dz/8cNq/f396/PHHL2rrEaGK+Oz5/Oc/30x/MtZCgAABAgQIECBAgACBmgt8cu6O/Wt+19a9oQBF6+69lRMgQIAAAQIECBAg0CQC8W3wL37xi+n3v/99iheaK1asSP/93/+dvdCcPHlyk6yyd8s4ffp0Onz48EUhifhZmPXr16/p21GUoxYtK6KCQrSe+OEPf5hd8t3vfjdFcCB+1uwtTcoxKlUpubDtSSmAc7lWKOWM2Uzn7N69Oz300ENp3Lhx2edPe3t79pm0Y8eOblt8NNP6rYUAAQIECBAgQIAAAQIEmkdAgKJ59tJKCBAgQIAAAQIECBBoYYFvfetbWTWFgwcPpgULFqS77767hTU+vfR4AT5gwIDsFx9//HFLV5243INRCpr8+Mc/ztqZRIBi1KhRnqELBEpGw4YNy6qXhFMETBx/FoiqN1u2bEk33HBDFrx5/vnn8RAgQIAAAQIECBAgQIAAgYYSEKBoqO0yWQIECBAgQIAAAQIECFxe4D/+4z/S/Pnz09atW9PnPvc5TJcIxAvvaDMQR0dHB59uBBYtWpT9JipRDBw4kNNlBKLKS4Qnrr/+ekbd+PzjP/5j9gx97Wtf8wwRIECAAAECBAgQIECAAIGGEhCgaKjtMlkCBAgQIECAAAECBAh0L/Dcc8+lTZs2Zf+ihL7j/wscOXIknT17NmslEC++oxrF+PHjvfy+4AEptaNYvXp1Vqnj3nvvTWPHjk2DBw/2GP2fQFSgOHDgQFZ1IoyiNUz8pyoUf35EIlwyc+bMdMcdd6SFCxd6dggQIECAAAECBAgQIECAQMMJCFA03JaZMAECBAgQIECAAAECBLoXiBDF+vXrszL6rR6iiFBAhCXiBXe0Eygd8SI8qlFEiOLCn7fqcxWhgFIQ4Pvf/37G0NnZmQVP4hg5cmSr0pxfd+lZujR4c+LEifT+++9/6hlrRbAIT0yZMiU98MAD6b777mtFAmsmQIAAAQIECBAgQIAAgSYQEKBogk20BAIEaifwyblb9a/d7dyJAAECBAgQINArgVWrVqXXX389rVy5smVDFBeGArpDjHDFkCFD0tChQ3vl3OgXXS5gcmGAItbXXQil0ddeyfyPHTuWInQzatSobi+LZylCKK0aNonwxPTp09O0adNUnqjk4XIuAQIECBAgQIAAAQIECBROQICicFtiQgQIECBAgAABAgQIEOi7wM9+9rMU/1otRBEv/CM8UW51iaiyEG09Wq0NQ6mtyaWhgEsDFPEkRngg2lUMGzas5cImlQQjSm1QolVMK7U+ifDEokWL0qRJk1Se6PtHtxEIECBAgAABAgQIECBAoM4CAhR13oCGuf3ZczPt1zCzNVECBAgQIECAAAECBM4J7Ny5M23atCl7uTlhwoSmN3nvvfdSv379Kq4CcOrUqRRVBkaPHp0GDhzY1E4Rhjh69Gi66qqrUrzov/S4XICidE60qzh58mQaMWJEyzhde+21Fbd5idBFhHJa4Xnau3dv+tGPfpRVn4gAhYMAAQIECBAgQIAAAQIECDS6gABFo++g+RMgQIBACwlIs7XQZlsqAQItIrBnz5700ksvZauNl495vIB844030urVq9M999yTbr311qaUjfBDhCDixf6gQYN6tcYIFkTliqhE0dsxenXjGl5UqpBwJacrBShiquG0f//+NHbs2KatslBpFZPLbWHpebruuuuatmpHKTwxb9689IUvfKHqT/K+ffvS2rVrM78777wz3XTTTVW/hwEJECBAgAABAgQIECBAgMClAgIUngkCBAgQIECAAAECBAjUQeDNN99MK1asSPHC+sMPP8z+++TJk9PMmTOrPpt4Eblw4cI0derUNGvWrKqPX68BS4GAqKYwcuTIqkwjQhTN2Koi1jVgwIAeW5X0FKAoIVfS2qIqG1OjQSKIE3+Pl7Y26e3tm7Vqx4YNG9K2bdvSqlWrUkdHR295ur0uPh+XLl2aIpwxbty4tGbNmixEkUfIrOqTNyABAgQIECBAgAABAgQINLSAAEVDb5/JEyBAgACBVhT45Nyi+39q4Zf/aSv6WDMBAo0isHLlyuwb1aUXggcPHszCE9FyI14YVvvo6upKc+bMSbfffntasGBBtYev+XhHjhzJ2iTk0U6imcIBlVZTKDdAERseY4dVs1TtKDdkUunDHtUoDh8+nFXsuFzblErHq/f5Tz31VHrhhRfSli1bUnt7e9WnE6GT+++/Py1ZsuR81YmodhGfjfG56SBAgAABAgQIECBAgAABAnkKCFDkqWtsAgQIECBAgAABAgQIdCMQLwMjNLF48eLzZzz55JPZf7/wZ9UEjBDFokWL0t/8zd+kzs7Oag5ds7HKaUNRjclEJYLjx4/3WLGhGvfKa4wImZw9e7aiagqVBChi3s0SDoggyLXXXptr+5YIBrz33ntp/Pjxud4nr+cpxo3nY8eOHbmFJ+Iel/tsjFZHb7/9dvb55SBAgAABAgQIdCeg+a1ngwABAgSqISBAUQ1FYxAgQIAAAQIECBAgQKBCgQhPxMvAdevWpaFDh2ZXx8/im9fxszyqUMQ9SpUoovJFtPVopCNecscRFQ9qcVRavaEWcyrnHhFqOHr0aIrWJpVWPKg0QFGaT6O2qqjHHjdqhZN4Nvbs2ZOeffbZXCpPxLMUz9GMGTM+9RkYP7uwIkU5fwfOIUCAAAECBAgQIECAAAECvREQoOiNmmsIECBAgAABAgQIECBQBYGoOBFBiWjdUTqWLVuWpk6dmiZMmFCFO1x+iAhR/PjHP05/+Zd/2RAhinjJvX///tTW1laXb+7HC+9hw4ZlLRiKfvS1QkdvAxThEsGN2KexY8c2hFU9q4yU9ikCLo3wXK1atSr94Q9/SA8++GBu4Yl4hvbt25ficzFCZKVj27Ztaffu3dp3FP3Dx/wIECBAgAABAgQIECDQJAICFE2ykZZBgAABAgQIECBAgEDjCZQqTsTLyY6OjmwBUYEiWniU/ndeqzp27FiKsMaQIUPSY489ltdt+jxutDzo169fGjlyZJ/H6ssAta5+0Zu5VmOOfQlQlObcCBUWYo5nzpzJ2mnU8yjt2YgRI9LAgQPrOZVu7/3www+nAQMGZGGrSiuaVLqgUmWezZs3Z5eWPiMfffTRdNNNN1U6nPMJECBAgAABAgQuEtDkxANBgACBcgQEKMpRcg4BAgQIECBAgAABAgRyEnjttdfSM888kyZPnpwOHTqUfXt/7ty5Od3t4mEjRBEvKv/4xz9m5fHzfjlayaKilP/x48dTvFgeNGhQJZfmdm6pTUWtWoiUu5BqtqGoRoAi5h1zinBAWBVl/0qeEcq55pprClP5obR/o0aNOt/Op9y9z/O8+HxYsWJFuvHGG9Mdd9xRs8+HtWvXZpUoogrPjh07ss/GC6v05LlmYxMgQIAAAQIECBAgQIAAAQEKzwABAgQIECBAgAABAgTqLBAv5vfs2ZOFJ/Js3dHdMp9++un06quvpi1bttTsJWl3cym1NrjqqqvqXnXicnMsWjDgyJEj6ezZsylevlfjqFaAojSXAwcOZEGFIoRz6t0Kpqf9icDCxx9/nIWG6l2NIuYyffr0dPvtt6f58+f3NPWq//7NN9/Mqk9E1Yloc9Qwhy91NsxWmSgBAgQIECBAgAABAgS6ExCg8GwQIECAAAECBAgQIECAQIo2Ii+//HLatGlTam9vr4tIhAFKL5CLVrXgQpDTp0+nw4cPZ6GACAfU44g5HD16NGvBMnTo0KpNodoBiphYqXJHPYMBEZ744IMPChFOuNJmlZ6teoZOurq6sooPUXUi2nY4CBAgQIAAAQIECBAgQIBAKwkIULTSblsrAQIECBAgQIAAAQIEriDw3HPPpdWrV6ft27fXNERRqjpx7bXXZoGARjmiRcWAAQNqXimj5JVHe5M8AhSxnxEMiGoUUSmj1qGT2Kc4itZ65UrPeYROotXI+PHja9oCJcITU6ZMSbNnzxaeaJQPIvMkQIAAAQIECBAgQIAAgaoKCFBUldNgBAgQIECAAAECBAgQaGyBqESxfv36moUo4uV2//79q9aCotb6peoKtXo5n3cYIK8ARWlfah06iRBCtMMoQguRSp/NUpWRuK4Wz1eEJ+bMmZMmTZokPFHpZjmfAAECBAgQIECAAAECBJpGQICiabbSQggQIECAAAECBAgQIFAdgZ/97Gcp/q1cuTK3ShRRReGdd95J119/fU2/YV8doYtHibVEdYW2trbsZX0eR+keeVckyDtAETaxlghSRCggr1YttbhHHvt8uTFPnTqVjh07lrUfycsrwhOLFi1KX//617N/DgIECBAgQIAAAQIECBAg0KoCAhStuvPWTYAAAQIECBAgQIAAgSsI7Ny5M61YsSJFRYoJEyZU1SrvKgpVnWyZg5VaVOQRCjhy5Eg6e/ZsTap01CJAUSKN0Em086h2dYhSeCLCJnkFWsp8LKp6WunvJoIU1VzX3r17U2dnZ5o3b15WfcJBgAABAgQIECBAgAABAgRaWUCAopV339oJECBAgAABAgQIECBwBYE33ngjrV69Ot1zzz3p1ltv7bNVvNg+evRort+k7/Mk+zhAvOS+6qqrqhIKKLVwGDJkSBo6dGgfZ1be5bUMUMSMSi1QqhUKiEoNH3/8cU1aXpQnWt2zSpVIRo0aVZVn4pVXXknbtm1LDz/8cLrxxhurO1mjESBAgAABAgQIECBAgACBBhQQoGjATTNlAgQIECBAgAABAgQI1Epg3759ac6cOWnmzJlp1qxZvbptvPT94IMP0oABA9LIkSN7NUYjXVSNl/j1CpvUOkAR+1qq3hGhgKhI0dujmuGV3s6hVtfFMxatPUaPHt3rahQbNmzIwhNRZaajo6NWU3cfAgQIECBAgAABAgQIECBQaAEBikJvj8kRIECAAAECBAgQIECg/gJdXV1p+vTp6e67704LFiyoaELRfiIqAkSFgUGDBlV0bSOfXApA9OYFdz1bnNQjQFHa51h3b0I2ebZPKfIz2JcKJbHPO3bsSFu2bEnt7e1FXqa5ESBAgAABAgQIECBAgACBmgoIUNSU280IECBAgAABAgQIECDQmAKlEMXkyZNTZ2dnj4soBQiGDRtWlVYDPd6wgCfEC+79+/en8ePHlxUeKbVnKPf8PJZczwBFrCcMIkgxZsyYss0qOT8Ps3qPGW1Q3n///bLNYo/37NmTnn32WeGJem9ey97/7LmV92vZ1Vs4AQIECBAgQIAAAQLFFhCgKPb+mB0BAgQIECBAgAABAgQKI1AKUUybNi0tXLiw23lF1YmzZ8+maMngSOnAgQOppyBJUczqHaAoPS9hFu08hg8f3u0jFG0sIqTiOfv/bVAOHz6cVfCI8OD+X9kAACAASURBVEl3R7Tr2Lp1q8oTPpgIECBAgAABAgQIECBAgEA3AgIUHg0CBAgQIECAQMUCvjVXMZkLCBBoGoEIUfzgBz9If/3Xf/2pEEURKigUFToCEnGMHDnyoin2pQ1DHmstSoAi1haVFU6ePJm1fxk4cOBFy61nm5M83Ks15qlTp1IESy7XMifCE3/4wx/Sgw8+qPJEtcCNQ4AAAQIECBAgQIAAAQJNJyBA0XRbakEECBAgQIAAAQIECBDIVyBe0C5btiwNGTIkPfbYY9nN4oX2mTNnsnYVjssLlF5ujx49OgsElNqcXO5ld70MixSgCIMImEQ1iuuuuy5rBVMKnFx77bVltfiol2O97xuBnfh7LFWjePjhh7MwSvzdXqmqR73n7f4ECBAgQIAAAQIECBAgQKDeAgIU9d4B9ydAgAABAgQIECBAgEADCkSIYvPmzemPf/xjmjlzZrrhhhu80C5jHyM0EWGTCFD01G6hjOGqfkrRAhSlBZYqThw/fjy1tbV51srY+XjW3n777bR+/fqsYszs2bPLuMopBAgQIECAAAECBAgQ6KPAJ+eu79/HMVxOoI4CAhR1xHdrAgQIECBAgAABAgQINLrA008/nV544YW0fft232wvYzPjpfb+/fvTsGHDsgoeUVWhSEdRAxRRvSPCE+EXVRUGDRpUJLZCziVCTlOmTElz5sxJM2bMKOQcTYoAAQIECBAgQIAAAQIECBRNQICiaDtiPgQIECBAgAABAgQIEGgwgVWrVqWXX345bdq0KbW3tzfY7Gs33WircPbs2TRq1KjspqWqCqU2C7WbSfd3KmKAIlp4XFitI/73VVddlUaOHFkEskLOoaurKwtPRNWJhQsXFnKOJkWAAAECBAgQIECAAAECBIooIEBRxF0xJwIECBAgQIAAAQIECDSYwHPPPZdWr16dVaIQorh4806fPp0OHz6cVZ24tOJEqbJCdyGKWlc+LVqAIkIm4TZ48OCLUE+cOJFOnjyZRowYkbVDcfxZQHjC00CAAAECBAgQIECAAAECBHovIEDReztXEiBAgAABAgQIECBAgMAFAlGJYuvWrWnLli1CFP/nEi0njh49mr3o767tRJwTVRXGjx9f99YURQlQlFqdtLW1dWsSwZRwu+666wrXCqVeHwzCE/WSd18CBAgQIECAAAECBAgQaBYBAYpm2UnrIECAAAECBAgQIECAQAEEfvazn6X498gjj6QJEyYUYEb1m0IlLToiDBBBi8tVW6jlCooQoIjwxAcffJDKbW0SztHio9VbekR4YtGiRelrX/tauvfee2v52LgXAQIECBAgQKA8gVqXVytvVs4iQIAAAQIXCQhQeCAIECBAgAABAgQIECBAoKoCO3fuTCtWrEhRkaIVQxTlVE/oDvzIkSPpzJkzZYcHqrpx5ward4AiwhCx/qjGUckR5nFthC66q/RRyXiNdu7evXvTwoUL05IlS9KkSZMabfrmS4AAAQIECBAgQIAAAQIECiMgQFGYrTARAgQIECBAgAABAgQI1E4gQg55vmjdt29fWr58eZo6dWr6x3/8x9otrM53igDE2bNn06hRo3o9kxMnTqTjx49XHCLo9Q0vuLCeAYr33nsvXX311X1qxxEtPa666qqWqkbxyiuvpG3btmVVXzo6OqrxGFx2jPibznP83CZuYAIECBAgQIAAAQIECBAgUIGAAEUFWE4lQIAAAQIECBAgQIBAowscPHgwbdq0KR06dCgtW7asTy+re7KIF65z5sxJM2fOTLNmzerp9Ib+fbTgOHz4cNaCY+jQoX1eS6miQlRiGDhwYJ/HK3eAegQoYq0RfIi1VqN6RARQTp48mUaMGFFTu3KNq3nehg0b0vbt29MTTzyRa7ghAhpxr6gos3jx4qo849V0MBYBAgQIECBAgAABAgQIEKiWgABFtSSNQ4AAAQIECBAgQIAAgYILRNWJl156KU2ePDmrDFGLo6urK02fPj3dfffdacGCBbW4Zc3vcerUqXTs2LHshX01AgClBZRCGcOHD0+DBw+uybpqHaCI8MTRo0fT6NGjqxp2CLsIZVx33XVN+7I/9mrHjh1py5Ytqb29Pbfn480330xLly5N69atS6+//nraunVrmjZtWs0+Q3JbmIEJECBAgAABAgQIECBAgMBlBAQoPBYECBAgQIAAAQIECBBoEYH7778/a9tx5513ZiuOahQffvhhGjt2bK4vmSNEEZUobr755tTZ2dlU2u+++262njFjxuS2rrjHgAEDatKWopYBimh3cubMmdzt4h5R3aKZjtinF198Mas+kWd4Iqp5xOfGvHnzsr/fOOJnUZEiKss4CBAgQIAAAQIECBAgQIBAswkIUDTbjloPAQIECBAgQIAAAQIEuhGIwMSiRYvSypUrsxegu3fvPn9m/GzcuHG52ZUqUUT1i2YIUUTlhHfeeSddf/31Va060d0GRIWLjz/+ONewQdy7VgGKCIVcddVVKapr5H2U2qFEyKWaFULynnd349eq8kTcPz4zNm/enN56663s8yE+P6rRoqZedu5LgAABAgQIECBAgAABAgR6EhCg6EnI7wkQIECAAAECBAgQINBEAk8++WTat29fuuWWW85/gzx+FsfixYtzXWmEAJYtW5aGDRuWli9fnuu98hy8FpUTLjf/CAJEW4q2traqtru48F55ByhKrTXqEWYIu6jkkWe1kDyfuxh71apV6Xe/+1363ve+l2vlicutY9OmTVmgIu/PibwNjU+AAAECBAgQIECAAAECBK4kIEDh+SBAgAABAgQIECBAgEALCcQL0HgReuFL0L1796a1a9emdevW5S5RClFEW4XVq1fnfr9q3iACDEePHs2qJgwePLiaQ5c9Vt4BhDwDFKVKENFOY+DAgWWvuZonRvuJ48ePp9GjR9dtDr1dz8MPP5xOnjyZhZBqUbljxowZ2efEhAkTsilH8GrhwoXp5Zdf7u0SXEeAAAECBAgQIECAAAECBAovIEBR+C0yQQIECBAgQIAAAQIECOQrEIGKQ4cOZeX5a3U8/fTT6be//W167LHHavIyuK/rOnXqVIrwx4gRIwrRBiKvFhh5BShq1YKknH2OEMrhw4ezSiiN0I4i7CI88dnPfjbNnz+/nCVW5ZwIakR4YurUqdl4pbY/0e7HQYAAAQIECBAgQIAAAQIEmlVAgKJZd9a6CBAgQIAAAQIECBAgcAWBCE3Et/HjX1SgiJei48aNq6lZhCheeOGFtH379kKHKCKsEK0fRo4cWVOfnm6WRyuRPAIURfWLeUUllKiIUdQjwhNTpkxJ06dPT3Pnzq3pNKNaTYQoOjo6svvu3r07ayFS+t81nYybFVzgk3Pz61/wOZoeAQIECBAgQIAAAQIEyhMQoCjPyVkECBAgQIAAAQIECBBoKoF4Obpnz54sNHHzzTfXbW3xQnb9+vVZiKK9vb1u87jcjaPlxDvvvJOuv/76QlSduNwcS5UxqtWSopoBilKlh6JU7ehuj6MtSxHn2NXVlYUnZs+enbXOqNcRnxPxeRGfE7UOWdVrze5LgAABAgQIECBAgAABAq0rIEDRuntv5QQIECBAgAABAgQIECiEQBFDFHlUd8gLO4IK+/fvzyopDBo0qE+3qVaAIsInBw4cqMqc+rSgMi+OuUaVkTFjxpR5Rb6nRXhi4sSJWXiis7Mz35sZnQABAgQIECBAgAABAgQIEDgvIEDhYSBAgAABAgQIECBAgACBugsUJUQRL/6jIsHw4cPT4MGD6+5SyQQiBDBs2LA0dOjQSi676NxqBCiiLcyf/vSnNGrUqF7Pox4XxryPHz+eqlXNo7drKErlid7O33UECBAgQIAAAQIECBAgQKCRBQQoGnn3zJ0AAQIECBAgQIAAAQJNJLB169b03HPPpRUrVqQJEybUfGWlF+hFbOdQLsa7776bVVIYOXJkuZdcdF5fAxRFq+RQKUKp7UhfgyiV3rd0foQnFi1alL7+9a9n/xwECBAgQIAAAQIECBAgQIBAbQUEKGrr7W4ECBAgQIAAAQIECBAgcAWBnTt3ZiGKRx55pKYhir4GD4q0qadOncoqKUQQZODAgRVNrS8BijC89tpr+9xGpKIJ53RyrOXMmTNZC5JaHXv37k0LFy5MS5YsSZMmTarVbd2HAAECBAgQIECAAAECBAgQuEBAgMLjQIAAAQIECBAgQIAAAQKFEti3b1/6zne+k6ZMmZJmzZqV69yiZcc777yTrr/++qZ48V/CinVFNYgIAAwaNKhsw94EKOJe+/fvT21tbRXdq+xJ1enEWFcEKcaMGZP7ul555ZW0bdu2LDjU0dFRpxW7LQECBAgQIECAAAECBAgQICBA4RkgQIAAAQIECBAgQIAAgcIJ1CJEES/H44gX5M16xBqjHcXgwYPLWmKlAYpStYtmNsy7LcmGDRvSli1b0po1a4QnynpKnUSAAAECBAgQIECAAAECBPITEKDIz9bIBAgQIECAAAECBAgQINAHga6urjR9+vQ0efLk1NnZ2YeRLr40KgscPXo0DR8+vOxgQdVuXoeBKgmKVBKgqEebizrwZbc8ceJEev/997OKHpW2RbnSnMN7x44dWYCivb29XstzXwIECBAgQIAAAQIECBAgQOD/BAQoPAoECBAgQIAAAQIECBAgUFiBCFFEK4+77rqrKiGKeBF+/PjxNGLEiNzbMhQJNdZ98uTJHqttlBugqLSyRZEsejuX06dPp8OHD2cVPYYOHdrbYc5fF9Yvvvhi2r59u/BEnzUNQIAAAQIECBAgQIAAAQIEqiMgQFEdR6MQIECAAAECBAgQIECAQE4C1apE8d5776V+/fqlkSNH5jTTYg8blTci+BDtNgYNGnTZyfYUoIgx9u/fn9ra2loqgHIhVjUqb6g8Uey/FbMjQIAAgXoLnD03gX71noT7EyBAgAABAi0qIEDRohtv2QQIECBAgAABAgQIEGgkgWPHjqU5c+akG2+8MS1fvryiqXvp/2euUhWF7tqXXClAEY4ffPBBVr2jmm0sKtrMgpxcThilu6muWrUq/e53v0vf+973VJ4oyH6aBgECBAgQIECAAAECBAgQKAkIUHgWCBAgQIAAAQIECBAgQKAhBCJE8YMf/CDFy+vVq1eXNeeoFhBHVF1w/FngyJEj2f+4tBpHdwGKalRdaEb/cDxz5kzZz9cDDzyQBgwYkJYtW5YixOIgQIAAAQIECBAgQIAAAQIEiiUgQFGs/TAbAgQIECBAgAABAgQIEOhB4Omnn0579uxJa9as6fYldIQsjh49mlVL6K5dRatDnzhxIh0/fjyNHz/+PMXlAhTR+iQqTnjhf/knJhzff//9zLG7yhwR/pk3b166+eab0/z581v90bN+AgQIECBAgAABAgQIECBQWAEBisJujYkRIECAAIEiC+hHWuTdMTcCBAi0gsDatWvTli1b0vbt2z/1Yr8UDBg9enTLt5ro6VmIoMmBAwdSW1tbZnVhgKL0uwgGCKFcWTJao0RgZ8iQIWno0KEXnRzhiSlTpqTp06enuXPn9rQlfk+AAAECBAgQIECAAAECBAjUUUCAoo74bk2AAAECBAgQIECAAAECvRdYtWpVWr9+fRaiaG9vzwaKagn9+vX7VGuK3t+l+a+Ml/+HDx/OqnX88Ic/zBb83e9+N0XbjitVVWh+mcpXGC09Pv744/NVPbq6urLwxOzZs9PChQsrH9AVBAg0roDMeePunZkTIECAAAECBAi0tIAARUtvv8UTIECAAAECBAgQIECgsQVKIYoXX3wxq6AQlRRUS+jdnkZg4rHHHssclyxZksaMGdO7gVr8qqjcEZYnT55Mf//3f5+FJzo7O1tcxfIJECBAgAABAgQIECBAgEBjCAhQNMY+mSUBAgQIECBAgAABAgQIdCMQIYqf/OQn6dVXXz1fiQJW7wS+853vZBc+8cQTvRvAVZlAVJ64/fbb07333qvyhGeCAAECBAgQIECAAAECBAg0kIAARQNtlqkSIECAAAECBAgQIECAwOUFtm7dmp577rm0YsWKNGHCBEwVCkQbjwMHDqS1a9dmV86dO1f7jgoNS6fv3bs384uWHdOmTevlKC4jQIAAAQIECBAgQIAAAQIE6iEgQFEPdfckQIAAAQIECBAgQIAAgaoL7Ny5M0U1CiGKymhLLSeiZccPf/jD7OJ//dd/Tfv3789CFFqilO8Z4Ynly5en++67L02aNKn8C51JgAABAgQIECBAgAABAgQIFEJAgKIQ22ASBAgQIECAAAECBAgQIFANgX379qVoQzFlypQ0a9asagzZ1GMcO3YsRfWJUaNGZev8/ve/n/1nZ2dn9p/vvvtuGjJkSBo6dGhTO1RjcRs2bEjbt2/P2p90dHRUY0hjECBAgAABAgQIECBAgAABAjUWEKCoMbjbESBAgAABAgQIECBAgEC+AhGimDdvXpo+fboQxRWoIxwRR1SeKB2XBiji50eOHElnzpy56Lx8d7DxRo/wxJYtW9KaNWuEJxpv+8yYAAECBAgQIECAAAECBAicFxCg8DAQIECAAAECBAgQIECAQNMJdHV1ZQGKyZMnn6+m0HSL7OWCouLE0aNH07XXXvup9hyXC1DEbU6dOpWiWsXo0aPTwIEDe3nn5rwszHbs2JEFKNrb25tzkVZFgAABAgQIECBAgAABAgRaRECAokU22jIJECBAgAABAgQIECDQagJCFJ/e8Y8++ijt378/tbW1fSo8EWd3F6CI38W1UbUiKlYMGjSo1R6ny643vNavX5927dolPOGJIECAAAECBAgQIECAAAECTSAgQNEEm2gJBAgQIECAAAECBAgQaFSBgwcPpm3btmXTnzp1aho3blxVlyJE8WfOEydOpD/96U9p1KhR3RpfKUBRuujAgQNp2LBhaejQoVXdq0YbLKxefPHFtH379qqHJ+Lv4s0338xIbr755pa3brRnw3wJECBAgAABAgQIECBQaIFPzs2uf6FnWNfJCVDUld/NCRAgQIBAswmcPbegfs22KOshQIAAgZwE9u3bl5588sl05513pkOHDmVtEObNm5e9MK7mEa0n5syZk2688ca0fPnyag7dMGNF6GHAgAFZ9YgrHeUEKOL6qEQRR0/jNQxQhRP953/+5/THP/4xPfvss2n48OEVXt3z6Xv27EkReFmzZk2aNm1amjlzZs8XOYMAAQIECBAgQIAAAQIECBDos4AARZ8JDUCAAAEC9RXwwr6+/p++u/Bq0XbEfAgQIFBcgZUrV6YbbrghC1DEEd+4X7p0aVq3bl3VK1FEiOIHP/hB1oZi9erVxUXJYWYRdoiKEYMHD+5x9HIDFDHQqVOn0vHjx9OIESPSwIEDexy7WU544IEHUkdHR5o9e3Yu4YmSU1RmiVBR/D04CBAgQIAAAQIECBAgQIAAgdoICFDUxtldCBAgQIAAAQIECBAgQOASgbVr16axY8eeD1DErzdt2pR2796d20vjxx9/PP3v//5v9s3+PCoHFGmTIywSlSfGjx+fBg0aVNbUKglQxIC9uUdZEyngSRHCmT59err99tvT/Pnzc51hVGdZuHBhLmGiXCducAIECBAgQIAAAQIECBAg0OACAhQNvoGmT4AAAQIECBAgQIAAgUYR2LlzZ5o0adL56e7duzdr4RGVKMaNG3f+5zNmzMillUfpBitWrEjbt2/P/jVriKJUHaLSFhuVBijC9PTp0+no0aNlV7lolOf1wnl2dXVlbTSixcw3vvGNXJcQrTvuv//+rHXH1KlTz98r/n42btyYtfbQ1iPXLTA4AQIECBAgQIAAAQIECLSwgABFC2++pRMgQIAAAQIECBAgQKBWAtGeI75R/81vfjN7EV06IkARx+LFi8//LKpQxEviuXPn5ja9VatWpfXr12chivb29tzuU4+Bo2XHmTNnssoTlR69CVCU7hH3jaPS0Ealc6z1+RGemDJlStayI57hPI6DBw9mw0aQKCqzRAWKCBaVjvibiHYepbBRnDN06NCL/pbymJcxCRAgQIAAAQIECBAgQIBAqwkIULTajlsvAQIECBAgQIAAAQIE6iAQL3w/85nPpGeeeSZFeKGjoyObRbw4XrRo0UXfto+Xxddcc81FrT3ymHKEBSJEsWvXrqYJUbz33nvp6quvzl6u9+boS4Ai7hfBl+PHj/cqvNGb+eZ9TYQnJk6cmIUnOjs7c7tdBCYiTBR/I7/+9a/T5s2bz+9hhI+WLl16UTuPqN4SfycXhixym5yBCRAgQIAAAQIECBAgQIBACwkIULTQZlsqAQIECBAgQIAAAQIE6iWwbdu2rB1B/OfWrVsvattRClHEt+/Hjh2b4uXwunXreh0CqGSNzVKJ4qOPPkr79+9PbW1tadCgQZUQXHRuXwMUMVjMJapRRCWKvsyl14uo0oWlyhN33XVXruGJ0nQjfLJs2bIshBLBiFIIJlraXNrOoxZVWqrEaBgCBAgQIECAAAECBAgQINBQAgIUDbVdJkuAQO0FPjl3y/61v607EiBAgAABAgSaWOBybTvipfGePXuyl8Y333xzTVcfgY54cR3f+p8wYUJN712Nm0Vg4YMPPkgjRoxIAwcO7NOQ1QhQxAROnz6dDh8+nIYPH54GDx7cpznV4+II8SxZsiTdd999WXihlkeEjHbv3p2FKKL6xMaNGy+qNBF/KxGqePTRR9NNN91Uy6m5FwECBAgQIECAAAECBAgQaHoBAYqm32ILJECAAAECBAgQIECAQLEELm3bsXPnzjRp0qS6TjLmENUoVqxY0VAhiqj0EEdUe6jGUa0ARWkuMb8BAwakkSNHVmN6NRkjwhPLly/PAhRf+MIXanLP7m7y0ksvpUOHDqW5c+eePyVa3kQLnAt/VtdJujkBAgQIECBAgAABAgQIEGgiAQGKJtpMSyFAgAABAgQIECBAgECjCMQ365cuXZpVnJg8eXKaOXNm3ae+b9++NG/evDR9+vQ0a9asus+npwlEOOGqq67KqjxU66h2gCLmFRUTTp48WbWQR7XWerlxNmzYkKI9xrPPPpuFFOp9lMJG0dImHF977bXz1SlKLT7qPUf3J0CAAAECBAgQIECAAAECzSQgQNFMu2ktBAgQIECAAAECBAgQaBCBaFOwY8eOLLBQpDYEEaKIMMecOXMKG6KIlh0RnoiqE4MGDarqjucRoIgJxpwPHDiQ2tra+txmpKoLvmCwp556Kr366qtpy5YthaqYEX8r0WYmAhS33HJL9nyOGzcuLwbjEiBAgAABAgQIECBAgACBlhYQoCjY9p89N59+BZuT6RAgQIAAAQIECBAgQKCaAtEiIVpmFPVFcFdXV1aFIipjdHZ2VnPpfR6rFJ4YP358LkGEvAIUsfDTp09nIYo8gh99hY11R6AnwhPt7e19Ha7pr48KMkUKPjU9uAUSIECAAAECBAgQIECAQM0EBChqRu1GBAgQIECAAAECBAgQINAoAhGimDhxYpo9e3ZhQhTHjh1LH3/8ca6tMPIMUJT2Po/WI315rmLN69evT7t27RKeKAMywhMLFy5MEyZMSMuWLcva8DgIECBAgAABAgQIECBAgECzCAhQNMtOWgcBAgQIECBAgAABAgS6EYi2FB0dHXwqFIgQRVTJ+OpXv1r3EEWEDgYMGJB7a4laBChiG44cOZLOnDmTaxiknO1WeaIcpYvPWbRoUZo7d2568skns19EiEJLkcodXUGAAAECBAgQIECAAAECxRQQoCjmvpgVAQIECBAgQIAAAQIEqiJQ+rb4a6+9VpXxWm2QqPoQ7TwigLJ69eqaL7/WbS9qFaAIyLzbkfS0WY888kh64403srYdw4cP7+l0v79E4MSJE2nt2rUpWvKsXLlSiMITQoAAAQIECBAgQIAAgZwEzp4bt19OYxv20wICFJd5Kj4597P+nhYCBAgQIECAAAECBAg0gUB8W3zs2LFp8eLFTbCa+iwhQhSPP/54OnnyZE1DFBEwOHDgQBo/fnwaNGhQTRZfywBFLCgCIvv376/pGuO+DzzwQPZ3MX/+fOGJPj5ZEaLYvXu3EEUfHV1OgAABAgQIECBAgAABAsUQEKAoxj6YBQECBAgQIECAAAECBKouUKo+sWnTJt8Or4JuhCj+67/+qyYVCyK0EeGCUaNGVWHm5Q9R6wBFaWYRFBk2bFgaOnRo+ZPtxZmliiJf/vKX00MPPdSLEVxyOYH4jNm6dWtatWqVdkEeEQIECBAgQIAAAQIECBBoaAEBiobePpMnQIAAAQIECBAgQIBA9wJPPvlk9ssLq08cPHgwe0md94vqZt2XFStWpO3bt2f/8mr7EGGCAQMGpDFjxtScsV4Biljou+++m6175MiRuay7q6srzZw5M/t333335XKPVh60FKL49re/nW677bZWprB2AgQIECBAgAABAgQIEGhgAQGKBt48UydAgAABAgQIECBAgEB3AhGUuP/++9PmzZuzsMTevXvTzp07s3+TJ09O0drD0TuB+Jb9+vXrsxBFe3t77wa5zFVRceLo0aPp2muvrVnLjkunUc8ARczl1KlTKapEjB49Og0cOLBqthGemDJlSpo9e3ZauHBh1cY10MUCr732WoqQ0bx589LUqVPxECBAgAABAgQIECBAgACBhhMQoGi4LTNhAgQIECBAgAABAgQI9CwQ1SfGjRuXxo4dmzZu3JhdMGHChOzb9/FzR98EImgQIYpdu3ZVJUTx0Ucfpf3796e2tra6hSdCpN4BiphDWEQVjvHjx1fFIsITEydOzMITnZ2dfdt4V39K4MSJE9nPSlVtonXQ0qVL07Rp07LPGwcBAgQIECBAgAABAgQIEGgkAQGKRtotcyVAgAABAgQIECBAgEA3AitXrkyTJk3KAhNRbaLUvuOWW27Jfn7zzTdf0S5egu7Zsyc711GewFNPPZWef/75PleiiKoLx48fW4ej0QAAIABJREFUr0vLjktXWoQARWlO0dJjyJAhfWo3U6o8cddddwlPlPdYV3RWtO3Yt29f+s1vfpNVtonARAQpotLNmjVrzlfAqWhQJxMgQIAAAQIECBAgQIAAgToKCFDUEd+tCRAgQIAAAQIECBAgUC2BeIkZoYn4z6g0EYGJ+FdOtYlo9xEtPQ4dOpS++c1v+tZ4BZuydevW9Mgjj6R///d/z9wrPaLSwoABAwoRnoi5FylAEfOJEEUcY8aMqZQ2CxLNmDEjLVu2LKuG4OidQASr4nPltttuu+jzJCpN7NixIy1evDgbeO3atZl5hLni8yR+3tHR0bubuooAAQIECBAgQIAAAQIECNRJQICiTvBuS4AAAQIECBAgQIAAgSIIlMIT8aJz3rx52UvQeOHsKF/gf/7nf7IQxcMPP5xuvfXWsi+McMCwYcPS4MGDy74m7xOLFqCI9UZ1lJMnT1YUoogX+UuWLMn+/d3f/V3ebE07fnwe7N69OwtOvPXWW+nRRx9NN910U7beCFbE70oBivhZVKSIz5QIYkU1HAcBAgQIECBAgEALCpw9t+Z+LbhuSyZAoGkEBCiaZisthAABAgQIECBAgAABApUJxLfKOzs7U7T5mDt3bmUXO/sigbCcPn16FkKZNWvWFXU++uijtH///tTW1pYGDRpUKMkiBigCKMyiWsf48eN7NNuwYUPWPmLLli0qIFTwdEVQJdpvlI5t27ZlAYmoKBHH/fffn1WiiFBKVKOIoESEreLfhZVuovpEfJ6oPlEBvlMJECBAICcBb3FzgjUsAQIECBBoagEBiqbeXosjQIAAAQIECBAgQIDA5QWi/P7SpUuz1gYzZ87EVAWBI0eOpClTpqS77747LViw4LIjnjp1Kh0/fryiagpVmFrZQxQ1QBELOH36dDp8+HAaPnx4t1U7nnrqqfTCCy+k7du3p5EjR5a97lY/sdQCaN26decpIhgxadKkrBVQqbJEBCU2btyY7rzzziw0ESGJFStWZKGKUmWKuC4+UwQoWv2psn4CBAgQIECAAAECBAg0poAARWPum1kTIECAAAECBAgQIECg1wKvvfZa9tIzyuxfGJ649Bvovb5BC1/Y1dWVVaKYPHlyVt3jwiNadpw5cyarolDUo8gBipJZBFXCccyYMRcxxtx37NiRVZ5ob28vKnHh5hV/91FdIj4PIjBROp588smsOk1UpYiKHlGJIv57VJiIdh5f+tKXsv9eqmTzmc98Jl1zzTXZ5Re29Sjcgk2IAAECBAgQIECAAAECBAhcQUCAwuNBgAABAgQIECBAgACBFhKIb5LHN8ij1cTUqVPPr3zv3r3Zy9CxY8emeBHt2+O9fygiRDFx4sQ0e/bs8yGK9957L1199dUXtUjo/R3yu7IRAhSx+njpH5U8SmGUmPf69evTrl27hCd68XjE58LWrVvTo48+er6SRGmY+FyIYEUpXFFq23HpbSJIEfsyYcKEXszAJQQIECBAgAABAgQIECBAoBgCAhTF2AezIECAAAECBAgQ6LXAJ+eu7N/rq11IoJUESi9Jo9x+lOWP4+DBg+nQoUPnAxNvv/12Vp0ivm0eJfodvROIEEWEVD7/+c+ne++9N3vRP2jQoN4NVsOrGiVAESQfffRROnDgQNqwYYPwRBWekVK4Kj4fbrvttvMjRoAiKkvEsxGtfyKAFZ8PDgIECBAgQIAAAQIECBAg0IwCAhTNuKvWRIAAAQIECBAgQIAAgUsE1q5dm3bv3n1RdYlt27Zlpfmj6kQcpdDEzp07U/zzkrRvj9GxY8eydh7h+9Of/rRvg9Xo6ooCFGfPTapfjSbWzW0eeOCBrIVEtO0YPnx4fSfTBHcvfSZc2N4nQlbR4iOOaOGhQk0TbLQlECBAgAABAgQIECBAgEC3AgIUHg4CBAgQIECAAAECBAg0uUC8AI1vkd95553Zvzii1P6MGTPSrFmzslYe8c3yCFNEef54iRovpQUo+v5gRIhi8+bN6fe//31avnx54V/yVxSg6DtPn0aI8MSQIUPSQw89VHjXPi20xhe/9tpr6ZlnnknTpk1LM2fOPP95EZ8RN9xwg8o0Nd4PtyNAgAABAgQIECBAgACB2goIUNTW290IECBAgAABAgQIECBQF4EIUaxbty4LSJSOKNMfZftLrToiNLFw4cL04YcfZt8yL7X5qMuEm+ymjz/+eHr11VfT9u3bC/2yvxECFKXKHl/+8pez8ISj+gKlz4LJkyenuXPnVv8GRiRAgAABAgQIECBAgAABAgUVEKAo6MaYFgECBAgQIECAAAECBPIWiPDEjh070pIlS9I111yTXnrppazNR/xv4Ynq6z/33HNZYCX+tbe3V/8GVRix6AGKrq6urCrCHXfckYV9HH0TiEo00Zbjckepcs2ECROyEEV35/VtBq4mQIAAAQIECBAgQIAAAQLFEhCgKNZ+mA0BAgQIECBAgAABAgRqKhBl+d96660sPBEvU1etWpU6Ojp6nEN8Q72c83ocqMVOCN/169dnlSiKGKIocoAiwhMTJ05M8+fPF56owt9NBHniKLXpuNyQpRBFhCcWL16chX8urGJThWkYggABAgQIECBAgMCnBD4595P+XAgQIFAnAQGKOsG7LQECBAgQIECAAAECBIokEO084uX+TTfdVNa0Fi1alG655ZY0derUss530p8FIqQQIYpdu3YVLkRR1ABFKTwxe/bs1NnZ6XGqgsDOnTtT/Fu5cuUVR4sQRYQmIjQV1Wnis8JBgAABAgQIECBAgAABAgSaVUCAoll31roIECBAgAABAgQIECBQgUB8s7wUnoiqFNHC40oVJvbs2ZO9yN62bZvS/hU4l0596qmn0vPPP1+4ShRFDFAIT/TiASvjkghG3H///enll1/u8eyoTlP6XOjxZCcQIECAAAECBAgQIECAAIEGFhCgaODNM3UCBAgQIECAAAECBAhUSyBekMY30eM/J02alLX0iJL9lwtRvPbaa2nFihXpm9/85hXL/1drbs06ztatW9ODDz6Yfv7zn6cJEyYUYplFC1Ds3bs3/cM//EP68Y9/nKZNm1YIo0aeRPzthukNN9yQxo0bl/0dR1WJCE9Fmw4HAQIECBAgQIAAAQIECBBodQEBilZ/AqyfAAECBAgQIECAAIGWF4jQRHwTffLkyecDEfHt9AhUXFrePypVbNy4sSVK+YfB66+/nmubkjfeeCM98MAD6fHHH0+33npr3Z/FIgUofvWrX6XHHnssrV69Ot144411t2mGCUTlmGjFcejQofTWW2+leMbj+PDDD9PYsWOzEEUEVbTpaIbdtgYCBAgQIECAAAECBAgQ6I2AAEVv1FxDoDcCZ89d1K83F7qGAAECBAgQIECAQL4CEYqIY+bMmedvFOX6d+7cmRYtWnT+Z3FeVE1YtWrVFdt75Dvb2owerUlirREgiW/q53nEC+3p06enefPmpVmzZuV5qx7HLkqAYsOGDWnNmjVpy5YtuT5rUZFh9+7dWXAgqoC0WnDgySefzJ7vqVOnZqGKeBajfY9qFD3+qTiBAAECBAgQIECAAAECBJpUQICiSTfWsggQIECAAAECBAgQIFCuQFSfiKBA6aVpfCs9ghMXhgciPLFjx46aBArKnXde58Va46X6smXLcg9PlNZw5MiR9JWvfCV961vfSgsWLMhraT2OW4QAxVNPPZVeeOGFLDzR3t7e45z7ekIEBxYuXJhuueWWNHfu3L4O11DXR0WKaNdzaaWZhlqEyRIgQIAAAQIECBAgQIAAgSoKCFBUEdNQBAgQIECAAAECBAgQaESBCEvEv/gmelSdiBeqixcvPv/N//iW+t69e1siPFEKjyxZsiTddNNNWYuDCFREi4P4Zv6kSZNy2+Kurq6sEkW0Uuns7MztPlcauN4Birj/iy++mLZv316T8ERYrF27Nqu80Iohgni+o/JMVOJwECBAgAABAgQIECBAgAABAucaCpw9d4AgQIAAAQIECBAgQIAAgdYViJeo69atS7/5zW/S5z73uRQVKSJMceLEiSxYEf9Zi1YWRdmBCJFs3Lgxxcv8CI9EaCKqc0RLiWizkXeIYuLEiWn27Nl1CVHUM0AR916/fn3atWtXzcIT3bVqiZ//7d/+bc0qkNTz2Y+/8ai2om1HPXfBvQkQIECAQJEFPjk3uf5FnqC5ESBAgACBqgoIUFSV02AECBAgQIBA8QUiO9qv+NM0QwIEaivgo+Ei73iZGiGBCAzES9UL23vUdmNqc7doY3DDDTdc9LI8ghMRpFi1alVWiSKOUnWOCJvkeUQliqlTp6Y77rij5iGKegUo4r6/+MUvsmoftWjbEfv35ptvpqVLl2Z73NHRcX5LoxrDhg0bsv8dgZmoPNLMRwSkhCeaeYetjQABAgQIECBAgAABAgQqERCgqETLuQQIECBAgAABAgQIEGgBgahIEVUobrnllqyVRzMf8fI4wgrxAv3CYEQYvP7669nvSsehQ4fSwoUL0+bNm3MnOXbsWNbOY+zYsemnP/3pFe5X3W8E1iNAcc8996Sw3bJlSxo+fHiutlFZIvY29jUqL8yaNSvddttt5+8Z4YlnnnkmC1Vcc801WWWG+DuINhcOAgQIECBAgAABAgQIECBAoPkFBCiaf4+tkAABAgQIECBAgAABAhULxEvmaOPR7EdUn9i3b1/avXt3ty/KS9/Qj6oUn/nMZy4KVeTpEyGKRx55JLvF8uXLcw8XxH1qGaAore8v/uIv0ty5c2uyvljj2rVr044dO9LkyZOz+5aO2OcZM2Zkz0H8vFSVIapiROBClYY8n3ZjEyBAgAABAgQIECBAgACBYggIUBRjH8yCAAECBAgQIECAAAECBOogEG05IigyZsyYrCLBtGnTLgpI7N2793wbjfhdPSoRPP744+nVV19N27dvzz1kUKsARYQnpkyZkm6//fb00EMP1Xzno9LE1q1bswoTFwaFIjgUv4tAzaW/q/kk3ZAAAQIECBAgUCUBHQurBGkYAgQIEGgJAQGKlthmiyRAgAABAgQIECBAgACBngTi5XkEJKKVR7T0KB1RmSCOelYgiJYSL7/8copqCO3t7T0tpde/r0WAoqurKwtPzJ49O2uJUq8jKo+8/fbbWQuPCEtEgKa0xxGsiX8rV66s1/TclwABAgQIECBAgAABAgQIEKiDgABFHdDdkgABAgQIECBAgAABAgSKKbBt27asMkG8OI9KBPFCPdo3FOGIEMX69euzShR5hSjyDlBEeGLixIlp/vz5dQ1PXLqfEaKIvS8FKKK1y5o1a9LmzZuLsPXmQIAAAQIECBAgQIAAAQIECNRIQICiRtBuQ4AAAQIECBAgQIAAAQKNIbB27dr00ksvpTvvvDPNnTu3UJOOgEOEKHbt2pVLiCLPAEUpPBGVJzo7OwvlGnseR1QgiYojl2vnUqgJmwwBAgQIECBAgAABAgQIECCQi4AARS6sBiVAgAABAgQIECBwTkCjWY8BgYYTiDYeRX95/tRTT6Xnn38+l0oUeQUoSuGJBx98MC1YsKCQz0W0R4nqIx9++GEhwzOFRDMpAgQIECBAgAABAgQIECDQZAICFE22oZZDgAABAgQIECBAgAABAr0XiDYON910U+ro6Oj9IDW4Ml70Rxjh5z//eZowYULV7phHgGLv3r3pG9/4Rlq+fHmaNm1a1eZqIAIECBAgQIAAAQIECBAgQIBAtQUEKKotajwCBAgQIECAAAECBAgQIFADgV/96lfpscceSw8//HC69dZbq3LHagcoXnnllfS9730v/fKXv0xjxoypyhwNQoAAAQIECBAgQIAAAQIECBDIS0CAIi9Z4xIgQIAAAQIECBAgQIAAgZwF9u3bl6ZPn57mzZuXZs2a1ee7VTNAsWHDhqzNyBNPPFH4ih59hjMAAQIECBAgQIAAAQIECBAg0BQCAhRNsY0WQYAAAQIECBRZ4JNzk+tf5AmaGwECBAg0tEBXV1eaMmVK+ta3vpUWLFjQp7VUK0AR47z44otZgKK9vb1Pc3IxAQKXF/B/Y3oyCBAgQIAAAQIECBAgUH0BAYrqmxqRQEMJnD03234NNWOTJUCAAAECBAgQIEDgUoFSiOKuu+5KnZ2dvQaqRoBCeKLX/C4kQIAAAQIECBAgQIAAAQIE6iwgQFHnDXB7AgQIECBAgAABAgQIECBQDYEIUUycODHNnj271yGKvgYohCeqsZPGIECAAAECBAgQIECAAAECBOolIEBRL3n3JUCAAAECBAgQIECAAAECVRaIEMW8efPSX/3VX6Uf/ehHFY/elwBFXPuLX/wibdq0SduOiuVdQIBAzwJqaPZs5AwCBAgQIECAAAECBPoqIEDRV0HXEyBAgAABAgQIECBAgACBAgkcO3YsTZ8+PXV0dKTVq1dXNLPeBijuueeedPLkyfTss8+m4cOHV3RPJxMgQIAAAQIECBAgQIBAiwjIxLbIRjf2MgUoGnv/zJ4AAQIECBAgQIAAAQIECHxKIEIUa9euTb/97W+zEEW5oYZKAxRxnwceeCB99rOfTQ899JCdIECAAAECBAgQIECAAAECBAg0tIAARUNvn8kTIECAAAECBAgQIECAAIHuBZ5++un0k5/8JO3atausEEUlAYoIT0yZMiXNmTMnzZgxwzYQIECAAAECBAgQIECAAAECBBpeQICi4bfQAggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG+CghQ9FXQ9QQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDDCwhQNPwWWgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQVwEBir4Kup4AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoeAEBiobfQgsgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+iogQNFXQdcTIECAAAECBAgQIECAAAECBAgQIECgLwKfnLu4f18GcC0BAgQIECBAgAABAtUQEKCohqIxCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYYWEKBo6O0zeQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAaAgIU1VA0BgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINDQAgIUDb19Jk+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhUQ0CAohqKxiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaWkCAoqG3z+QJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBaggIUFRD0RgECPRe4JNzl/bv/eWuJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDUEBCiqoWgMAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoKEFBCgaevtMngABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiGgABFNRSNQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS0gABFQ2+fyRMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLVEBCgqIaiMQgQIECAAAECBAgQINDAAmfPzb1fA8/f1AkQIECAAAECBAgQIECAAAECBAhUQ0CAohqKhRrjk3Oz6V+oGZkMAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAouoAARdF3yPwIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB3AV6HaBQ4jX3vXEDAgQIECBAgAABAgQIECBAgAABAi0i4P+3sUU22jIJECBAgAABAgQIFFqg1wGKQq/K5AgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECFQgIUFSA5VQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOQUEKJpzX62KAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEBAgKICLKcSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECzSkgQNGc+2pVBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQAUCAhQVYDmVAAECBAgQIECAAAECBAgQIECAAAECBAgQINC9wCfnftUfEAECBAgQIFCBQJH+X08Bigo2zqkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAcwoIUDTnvloVAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDOAmfP3b9fnefg9gQIECBAoHwBAYryrZxJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINKmAAEWTbqxlEaiGgGxwNRSNQYAAAQIECBAg0BcB/zdpX/RcS4AAAQIECBAgQIAAAQIECBAgUImAAEUlWs4lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmlJAgKIpt9WiCBAg0DuBT85d1r93l7qKAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEMLCFA09PaZPAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFANAQGKaigagwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGhoAQGKumyfIvl1YXdTAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQjYAAhUeDAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaHkBAYqWfwQAECBAgAABAgQIECBAgAABAgQIECBQTQH1Z6upaSwCBAgQIECAAAECtRMQoKidtTsRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBRUQoCjoxpgWAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUDsBAYraWbsTAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUFABAYqCboxpESBAgAABAgQIECBAgAABAgSaReDsuYX0a5bFWAcBAgQIECBAgAABAgQINK2AAEXTbq2FESDQCgKfnFtk/1ZYqDUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyFlAgCJnYMMTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECxRcQoCj+HpkhAQIECBAgQKApBZTybspttSgCBAgQIECAAAECBAgQIECAAAECBAg0rIAARcNunYkTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC1RIQoKiWpHEIECBAgAABAgQIECDQtAKfnFtZ/6ZdnYURIECAAAECBAgQIECAAAECBAgQCAEBCs8BAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0PICAhQt/wgAIECAAAECBAgQIECAAAECBAgQIECAAAECBGomcPbcnfrV7G5uRIAAAQIECFQgIEBRAZZTCRAgQIAAAQIECBAgQIAAAQIECBAgUKmAZliVijmfAAECBAgQIECAQH0EBCjq4+6uBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQIEEBCgKtBmmQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNRHQICiPu7uSoAAAQIEWldA7drW3XsrJ0CAAAECBAgQIECAAAECBAgQIECAAAECBRYQoCjw5pgaAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUBsBAYraOLsLAQIECBAgUGSBs+cm16/IEzQ3AgQIECBAgAABAgQIECBAgAABAgQIECBAIG8BAYq8hY1PgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIFF5AgKLwW2SCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQN4CAhR5CxufAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQKLyAAEXht8gECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbwFBCjyFjY+AQIECBAgQIAAAQIECBAgUGOBT87dr3+N7+l2BAgQIECAAAECBAgQIECAQKMLCFA0+g6aPwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBnAQGKPhMagAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGh0AQGKRt9B8ydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT6LCBA0WdCAxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNLiBA0eg7aP4ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAnwUEKPpMaAACBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg0QUEKBp9B82fAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6LOAAEWfCQ1AgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLqAAEWj76D5EyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAn0WEKDoM6EBCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUYXEKBo9B00fwIECBAgQIAAAQIECBAgQIAAAQIFFPjk3Jz6F3BepkSAAAECBAgQIECAAIHuBAQoPBsEKhI4e+7sfhVd4WQCBAgI3G0TAAABf0lEQVQQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQKL6AAEXx98gMCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwFBChyBjY8AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHwBAYri75EZEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAjkLCFDkDGx4AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoPgCAhTF3yMzJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHIWEKDIGdjwBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQPEFBCiKv0dmSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvQXOnptAv3pPwv0JEMhTQIAiT11jEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0h8P8AvAmt1RkUWbMAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# One could calculate the center of masses from the Wannier orbitals...\n", "coms = orbital_center(atoms, wannier[0])\n", "atoms.view(coms)" ] }, { "cell_type": "code", "execution_count": 10, "id": "ba268f74", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Costs:\n", "tensor([3.5156, 3.6412, 3.8532, 4.5234])\n", "FLO spreads = tensor([[3.5156, 3.6412, 3.8532, 4.5234]])\n", "FLO spread = 15.533380985078622\n" ] } ], "source": [ "# ...and use them as an initial guess to create a set of FLOs\n", "flo = FLO(scf, fods=coms)\n", "flo_spreads = wannier_cost(atoms, flo)\n", "print(f\"FLO spreads = {flo_spreads}\")\n", "print(f\"FLO spread = {xp.sum(flo_spreads)}\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "128a6250e40b481cabf0c6583e169152": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "icon": "compress", "layout": "IPY_MODEL_2dab4c1803474f679f88b1a5121ab8d6", "style": "IPY_MODEL_ab259944960a4155bde43326f4fb956d", "tooltip": null } }, "2dab4c1803474f679f88b1a5121ab8d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "width": "34px" } }, "2ddd6279681e4cada4ff6a277d5c5745": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "5cc24530eeb54f459f02879a5b0e1e7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "62f542d04aad43e3b16452a0170f15c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ "IPY_MODEL_b2a52b906ce14829a2ed0f58106f6ae7", "max" ], "target": [ "IPY_MODEL_738c9957fd514383ba5983c0850a9a86", "max_frame" ] } }, "67a59198bed8461bb1cc9ad328b6d094": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_b2a52b906ce14829a2ed0f58106f6ae7", "IPY_MODEL_b2528e96aef847a6b5ef36c5d7e267b4" ], "layout": "IPY_MODEL_c2f0c7bd77b94d7a9290aefab2f136f0" } }, "69564eb04f6b42dc87eaf4f68b02b09f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ "IPY_MODEL_b2a52b906ce14829a2ed0f58106f6ae7", "value" ], "target": [ "IPY_MODEL_738c9957fd514383ba5983c0850a9a86", "frame" ] } }, "725b2385e0b745669e7c29f8ce6793c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "738c9957fd514383ba5983c0850a9a86": { "model_module": "nglview-js-widgets", "model_module_version": "3.0.6", "model_name": "NGLModel", "state": { "_camera_orientation": [ 13.473037859464077, 0, 0, 0, 0, 13.473037859464077, 0, 0, 0, 0, 13.473037859464077, 0, -5.291500091552734, -5.291500091552734, -5.291500091552734, 1 ], "_camera_str": "orthographic", "_gui_theme": null, "_ibtn_fullscreen": "IPY_MODEL_128a6250e40b481cabf0c6583e169152", "_igui": null, "_iplayer": "IPY_MODEL_67a59198bed8461bb1cc9ad328b6d094", "_ngl_color_dict": {}, "_ngl_coordinate_resource": {}, "_ngl_full_stage_parameters": { "ambientColor": 14540253, "ambientIntensity": 0.2, "backgroundColor": "white", "cameraEyeSep": 0.3, "cameraFov": 40, "cameraType": "perspective", "clipDist": 10, "clipFar": 100, "clipMode": "scene", "clipNear": 0, "clipScale": "relative", "fogFar": 100, "fogNear": 50, "hoverTimeout": 0, "impostor": true, "lightColor": 14540253, "lightIntensity": 1, "mousePreset": "default", "panSpeed": 1, "quality": "medium", "rotateSpeed": 2, "sampleLevel": 0, "tooltip": true, "workerDefault": true, "zoomSpeed": 1.2 }, "_ngl_msg_archive": [ { "args": [ "400px", "400px" ], "kwargs": {}, "methodName": "setSize", "reconstruc_color_scheme": false, "target": "Widget", "type": "call_method" }, { "args": [ { "binary": false, "data": "CRYST1 10.584 10.584 10.584 90.00 90.00 90.00 P 1 \nMODEL 1\nATOM 1 C MOL 1 5.292 5.292 5.292 1.00 0.00 C\nATOM 2 H MOL 1 5.919 5.919 5.919 1.00 0.00 H\nATOM 3 H MOL 1 5.919 4.664 4.664 1.00 0.00 H\nATOM 4 H MOL 1 4.664 5.919 4.664 1.00 0.00 H\nATOM 5 H MOL 1 4.664 4.664 5.919 1.00 0.00 H\nENDMDL\n", "type": "blob" } ], "kwargs": { "defaultRepresentation": false, "ext": "pdb" }, "methodName": "loadFile", "reconstruc_color_scheme": false, "target": "Stage", "type": "call_method" }, { "args": [], "component_index": 0, "kwargs": {}, "methodName": "removeAllRepresentations", "reconstruc_color_scheme": false, "target": "compList", "type": "call_method" }, { "args": [ "ball+stick" ], "component_index": 0, "kwargs": { "sele": "all" }, "methodName": "addRepresentation", "reconstruc_color_scheme": false, "target": "compList", "type": "call_method" }, { "args": [ "unitcell" ], "component_index": 0, "kwargs": { "sele": "all" }, "methodName": "addRepresentation", "reconstruc_color_scheme": false, "target": "compList", "type": "call_method" }, { "args": [ { "binary": false, "data": "CH4_WO_0.cube", "type": "path" } ], "kwargs": { "defaultRepresentation": false, "ext": "cube" }, "methodName": "loadFile", "reconstruc_color_scheme": false, "target": "Stage", "type": "call_method" }, { "args": [], "component_index": 1, "kwargs": {}, "methodName": "removeAllRepresentations", "reconstruc_color_scheme": false, "target": "compList", "type": "call_method" }, { "args": [ "surface" ], "component_index": 1, "kwargs": { "color": "lightgreen", "isolevel": -0.01, "isolevelType": "value", "negateIsolevel": true, "opacity": 0.75, "sele": "all", "side": "front", "useWorker": false }, "methodName": "addRepresentation", "reconstruc_color_scheme": false, "target": "compList", "type": "call_method" }, { "args": [ { "binary": false, "data": "CH4_WO_0.cube", "type": "path" } ], "kwargs": { "defaultRepresentation": false, "ext": "cube" }, "methodName": "loadFile", "reconstruc_color_scheme": false, "target": "Stage", "type": "call_method" }, { "args": [], "component_index": 2, "kwargs": {}, "methodName": "removeAllRepresentations", "reconstruc_color_scheme": false, "target": "compList", "type": "call_method" }, { "args": [ "surface" ], "component_index": 2, "kwargs": { "color": "red", "isolevel": 0.01, "isolevelType": "value", "negateIsolevel": true, "opacity": 0.75, "sele": "all", "side": "front", "useWorker": false }, "methodName": "addRepresentation", "reconstruc_color_scheme": false, "target": "compList", "type": "call_method" } ], "_ngl_original_stage_parameters": { "ambientColor": 14540253, "ambientIntensity": 0.2, "backgroundColor": "white", "cameraEyeSep": 0.3, "cameraFov": 40, "cameraType": "perspective", "clipDist": 10, "clipFar": 100, "clipMode": "scene", "clipNear": 0, "clipScale": "relative", "fogFar": 100, "fogNear": 50, "hoverTimeout": 0, "impostor": true, "lightColor": 14540253, "lightIntensity": 1, "mousePreset": "default", "panSpeed": 1, "quality": "medium", "rotateSpeed": 2, "sampleLevel": 0, "tooltip": true, "workerDefault": true, "zoomSpeed": 1.2 }, "_ngl_repr_dict": { "0": { "0": { "params": { "aspectRatio": 2, "assembly": "default", "bondScale": 0.4, "bondSpacing": 1, "clipCenter": { "x": 0, "y": 0, "z": 0 }, "clipNear": 0, "clipRadius": 0, "colorMode": "hcl", "colorReverse": false, "colorScale": "", "colorScheme": "element", "colorValue": 9474192, "cylinderOnly": false, "defaultAssembly": "", "depthWrite": true, "diffuse": 16777215, "diffuseInterior": false, "disableImpostor": false, "disablePicking": false, "flatShaded": false, "interiorColor": 2236962, "interiorDarkening": 0, "lazy": false, "lineOnly": false, "linewidth": 2, "matrix": { "elements": [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] }, "metalness": 0, "multipleBond": "off", "opacity": 1, "openEnded": true, "quality": "medium", "radialSegments": 10, "radiusData": {}, "radiusScale": 1, "radiusSize": 0.15, "radiusType": "size", "roughness": 0.4, "sele": "all", "side": "double", "sphereDetail": 1, "useInteriorColor": true, "visible": true, "wireframe": false }, "type": "ball+stick" }, "1": { "params": { "clipCenter": { "x": 0, "y": 0, "z": 0 }, "clipNear": 0, "clipRadius": 0, "colorMode": "hcl", "colorReverse": false, "colorScale": "", "colorScheme": "element", "colorValue": "orange", "defaultAssembly": "", "depthWrite": true, "diffuse": 16777215, "diffuseInterior": false, "disableImpostor": false, "disablePicking": false, "flatShaded": false, "interiorColor": 2236962, "interiorDarkening": 0, "lazy": false, "matrix": { "elements": [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] }, "metalness": 0, "opacity": 1, "quality": "medium", "radialSegments": 10, "radiusData": {}, "radiusScale": 1, "radiusSize": 0.052919997677017605, "radiusType": "vdw", "roughness": 0.4, "sele": "all", "side": "double", "sphereDetail": 1, "useInteriorColor": true, "visible": true, "wireframe": false }, "type": "unitcell" } }, "1": { "0": { "params": { "background": false, "boxSize": 0, "clipCenter": { "x": 0, "y": 0, "z": 0 }, "clipNear": 0, "clipRadius": 0, "colorMode": "hcl", "colorReverse": false, "colorScale": "", "colorScheme": "uniform", "colorValue": 9498256, "contour": false, "depthWrite": true, "diffuse": 16777215, "diffuseInterior": false, "disablePicking": false, "flatShaded": false, "interiorColor": 2236962, "interiorDarkening": 0, "isolevel": -0.01, "isolevelScroll": false, "isolevelType": "value", "lazy": false, "matrix": { "elements": [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] }, "metalness": 0, "negateIsolevel": true, "opacity": 0.75, "opaqueBack": true, "quality": "medium", "roughness": 0.4, "side": "front", "smooth": 0, "useInteriorColor": false, "useWorker": false, "visible": true, "wireframe": false, "wrap": false }, "type": "surface" } }, "2": { "0": { "params": { "background": false, "boxSize": 0, "clipCenter": { "x": 0, "y": 0, "z": 0 }, "clipNear": 0, "clipRadius": 0, "colorMode": "hcl", "colorReverse": false, "colorScale": "", "colorScheme": "uniform", "colorValue": 16711680, "contour": false, "depthWrite": true, "diffuse": 16777215, "diffuseInterior": false, "disablePicking": false, "flatShaded": false, "interiorColor": 2236962, "interiorDarkening": 0, "isolevel": 0.01, "isolevelScroll": false, "isolevelType": "value", "lazy": false, "matrix": { "elements": [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] }, "metalness": 0, "negateIsolevel": true, "opacity": 0.75, "opaqueBack": true, "quality": "medium", "roughness": 0.4, "side": "front", "smooth": 0, "useInteriorColor": false, "useWorker": false, "visible": true, "wireframe": false, "wrap": false }, "type": "surface" } } }, "_ngl_serialize": false, "_ngl_version": "2.0.0-dev.39", "_ngl_view_id": [ "AF025458-CC8E-4AEB-96E2-5676FCA1051D", "9F706868-C9DF-4A3F-94AE-1F29203C5AF6" ], "_player_dict": {}, "_scene_position": {}, "_scene_rotation": {}, "_synced_model_ids": [], "_synced_repr_model_ids": [], "_view_height": "", "_view_width": "", "background": "white", "frame": 0, "gui_style": null, "layout": "IPY_MODEL_890863adcb6840c0bc563d82ce98594f", "max_frame": 0, "n_components": 3, "picked": {} } }, "73d86cb3e39544c5a10898e0e9d9c800": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "785fc738c6f64db1a5028d3816859295": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "890863adcb6840c0bc563d82ce98594f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "936849d9e773493b8a23a1d2224c5b1b": { "model_module": "nglview-js-widgets", "model_module_version": "3.0.6", "model_name": "ColormakerRegistryModel", "state": { "_msg_ar": [], "_msg_q": [], "_ready": true, "layout": "IPY_MODEL_785fc738c6f64db1a5028d3816859295" } }, "ab259944960a4155bde43326f4fb956d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "b2528e96aef847a6b5ef36c5d7e267b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": { "behavior": "drag-tap", "layout": "IPY_MODEL_2ddd6279681e4cada4ff6a277d5c5745", "max": 0, "style": "IPY_MODEL_73d86cb3e39544c5a10898e0e9d9c800" } }, "b2a52b906ce14829a2ed0f58106f6ae7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": { "layout": "IPY_MODEL_725b2385e0b745669e7c29f8ce6793c7", "max": 0, "style": "IPY_MODEL_eafa7a2f93af4e83a1585c37096a770d" } }, "b9e93100003a40f1bcad830ec14ecbf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ "IPY_MODEL_b2a52b906ce14829a2ed0f58106f6ae7", "value" ], "target": [ "IPY_MODEL_b2528e96aef847a6b5ef36c5d7e267b4", "value" ] } }, "c2f0c7bd77b94d7a9290aefab2f136f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c33f098851e647278469bdf8ef103441": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ImageModel", "state": { "layout": "IPY_MODEL_5cc24530eeb54f459f02879a5b0e1e7f", "width": "900.0" } }, "eafa7a2f93af4e83a1585c37096a770d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "ed9b4df1fb46448f9a95834a61f2fabd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ "IPY_MODEL_b2528e96aef847a6b5ef36c5d7e267b4", "max" ], "target": [ "IPY_MODEL_738c9957fd514383ba5983c0850a9a86", "max_frame" ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }