Source code for eminus.xc.utils

# SPDX-FileCopyrightText: 2021 The eminus developers
# SPDX-License-Identifier: Apache-2.0
"""Utility functions for exchange-correlation functionals."""

import inspect
import sys

import numpy as np

from .. import config
from ..logger import log
from ..utils import add_maybe_none
from .gga_c_chachiyo import gga_c_chachiyo, gga_c_chachiyo_spin
from .gga_c_pbe import gga_c_pbe, gga_c_pbe_spin
from .gga_c_pbe_sol import gga_c_pbe_sol, gga_c_pbe_sol_spin
from .gga_x_chachiyo import gga_x_chachiyo, gga_x_chachiyo_spin
from .gga_x_pbe import gga_x_pbe, gga_x_pbe_spin
from .gga_x_pbe_sol import gga_x_pbe_sol, gga_x_pbe_sol_spin
from .lda_c_chachiyo import lda_c_chachiyo, lda_c_chachiyo_spin
from .lda_c_chachiyo_mod import lda_c_chachiyo_mod, lda_c_chachiyo_mod_spin
from .lda_c_pw import lda_c_pw, lda_c_pw_spin
from .lda_c_pw_mod import lda_c_pw_mod, lda_c_pw_mod_spin
from .lda_c_vwn import lda_c_vwn, lda_c_vwn_spin
from .lda_x import lda_x, lda_x_spin
from .lda_xc_gdsmfb import lda_xc_gdsmfb, lda_xc_gdsmfb_spin


[docs] def get_xc(xc, n_spin, Nspin, dn_spin=None, tau=None, xc_params=None, dens_threshold=0): """Handle and get exchange-correlation functionals. Args: xc: Exchange and correlation identifier. n_spin: Real-space electronic densities per spin channel. Nspin: Number of spin states. Keyword Args: dn_spin: Real-space gradient of densities per spin channel. tau: Real-space kinetic energy densities per spin channel. xc_params: Exchange-correlation functional parameters. dens_threshold: Do not treat densities smaller than the threshold. Returns: Exchange-correlation energy density and potential. """ if isinstance(xc, str): xc = parse_functionals(xc) f_exch, f_corr = xc if xc_params is None: xc_params = {} # Only use non-zero values of the density n = np.sum(n_spin, axis=0) nz_mask = np.where(n > dens_threshold) n_nz = n[nz_mask] # Zeta is only needed for non-zero values of the density zeta_nz = get_zeta(n_spin[:, nz_mask]) # dn_spin is only needed for non-zero values of the density if dn_spin is not None: dn_spin_nz = dn_spin[:, nz_mask[0], :] else: dn_spin_nz = None def handle_functional(fxc): """Calculate a given functional fxc, same for exchange and correlation.""" # Calculate with the libxc extra... if ":" in fxc: from ..extras.libxc import libxc_functional fxc = fxc.split(":")[-1] exc, vxc, vsigma, vtau = libxc_functional(fxc, n_spin, Nspin, dn_spin, tau, xc_params) # ...or use an internal functional else: if Nspin == 2 and fxc != "mock_xc": fxc += "_spin" exc_nz, vxc_nz, vsigma_nz = IMPLEMENTED[fxc]( n_nz, zeta=zeta_nz, dn_spin=dn_spin_nz, Nspin=Nspin, **xc_params ) # Map the non-zero values back to the right dimension exc = np.zeros_like(n) exc[nz_mask] = exc_nz vxc = np.zeros_like(n_spin) for s in range(Nspin): vxc[s, nz_mask] = vxc_nz[s] if vsigma_nz is not None: vsigma = np.zeros((len(vsigma_nz), len(exc))) for i in range(len(vsigma)): vsigma[i, nz_mask] = vsigma_nz[i] else: vsigma = None # There are no internal meta-GGAs vtau = None return exc, vxc, vsigma, vtau ex, vx, vsigmax, vtaux = handle_functional(f_exch) # Calculate the exchange part ec, vc, vsigmac, vtauc = handle_functional(f_corr) # Calculate the correlation part return ex + ec, vx + vc, add_maybe_none(vsigmax, vsigmac), add_maybe_none(vtaux, vtauc)
[docs] def get_exc(xc, n_spin, Nspin, dn_spin=None, tau=None, xc_params=None, dens_threshold=0): """Get the exchange-correlation energy density. This is a convenience function to interface :func:`~eminus.xc.utils.get_xc`. Args: xc: Exchange and correlation identifier. n_spin: Real-space electronic densities per spin channel. Nspin: Number of spin states. Keyword Args: dn_spin: Real-space gradient of densities per spin channel. tau: Real-space kinetic energy densities per spin channel. xc_params: Exchange-correlation functional parameters. dens_threshold: Do not treat densities smaller than the threshold. Returns: Exchange-correlation energy potential. """ exc, _, _, _ = get_xc(xc, n_spin, Nspin, dn_spin, tau, xc_params, dens_threshold) return exc
[docs] def get_vxc(xc, n_spin, Nspin, dn_spin=None, tau=None, xc_params=None, dens_threshold=0): """Get the exchange-correlation potential. This is a convenience function to interface :func:`~eminus.xc.utils.get_xc`. Args: xc: Exchange and correlation identifier. n_spin: Real-space electronic densities per spin channel. Nspin: Number of spin states. Keyword Args: dn_spin: Real-space gradient of densities per spin channel. tau: Real-space kinetic energy densities per spin channel. xc_params: Exchange-correlation functional parameters. dens_threshold: Do not treat densities smaller than the threshold. Returns: Exchange-correlation energy density. """ _, vxc, vsigma, vtau = get_xc(xc, n_spin, Nspin, dn_spin, tau, xc_params, dens_threshold) return vxc, vsigma, vtau
[docs] def parse_functionals(xc): """Parse exchange-correlation functional strings to the internal format. Args: xc: Exchange and correlation identifier, separated by a comma. Returns: Exchange and correlation string. """ # Check for combined aliases try: # Remove underscores when looking up in the dictionary xc_ = xc.replace("_", "") xc = ALIAS[xc_] except KeyError: pass # Parse functionals functionals = [] for f in xc.split(","): if ":" in f or f in IMPLEMENTED: f_xc = f elif not f: f_xc = "mock_xc" else: try: # Remove underscores when looking up in the dictionary f_ = f.replace("_", "") f_xc = XC_MAP[f_] except KeyError: log.exception(f'No functional found for "{f}".') raise functionals.append(f_xc) # If only one or no functional has been parsed append with mock functionals functionals.extend("mock_xc" for _ in range(2 - len(functionals))) return functionals
[docs] def parse_xc_type(xc): """Parse functional strings to identify the corresponding functional type. Args: xc: Exchange and correlation identifier, separated by a comma. Returns: Functional type. """ xc_type = [] for func in xc: if ":" in func: xc_id = func.split(":")[-1] # Try to parse the functional using pylibxc at first try: family = parse_xc_libxc(xc_id) # Otherwise parse it with PySCF except (ImportError, AssertionError): family = parse_xc_pyscf(xc_id) if family == 1: xc_type.append("lda") elif family == 2: xc_type.append("gga") elif family == 4: xc_type.append("meta-gga") else: msg = "Unsupported functional family." raise NotImplementedError(msg) # Fall back to internal xc functionals elif "gga" in func: xc_type.append("gga") else: xc_type.append("lda") # When mixing functional types use the higher level of theory if xc_type[0] != xc_type[1]: log.warning("Detected mixing of different functional types.") if "meta-gga" in xc_type: return "meta-gga" return "gga" return xc_type[0]
[docs] def parse_xc_libxc(xc_id): """Parse functional type by its ID using pylibxc. Args: xc_id: Functional ID or identifier. Returns: Functional type. """ if not config.use_pylibxc: raise AssertionError import pylibxc if not xc_id.isdigit(): xc_id = pylibxc.util.xc_functional_get_number(xc_id) func = pylibxc.LibXCFunctional(int(xc_id), 1) if func._needs_laplacian: msg = "meta-GGAs that need a laplacian are not supported." raise NotImplementedError(msg) return func.get_family()
[docs] def parse_xc_pyscf(xc_id): """Parse functional type by its ID using PySCF. Args: xc_id: Functional ID or identifier. Returns: Functional type. """ from pyscf.dft.libxc import is_gga, is_lda, is_meta_gga, needs_laplacian, XC_CODES if not xc_id.isdigit(): xc_id = XC_CODES[xc_id.upper()] if needs_laplacian(int(xc_id)): msg = "meta-GGAs that need a laplacian are not supported." raise NotImplementedError(msg) # Use the same values as in parse_xc_libxc if is_lda(xc_id): return 1 if is_gga(xc_id): return 2 if is_meta_gga(xc_id): return 4 return -1
[docs] def get_xc_defaults(xc): """Get the default parameters and values for a given set of functionals. Args: xc: Exchange and correlation identifier, separated by a comma. Returns: Default parameters and values. """ if isinstance(xc, str): xc = parse_functionals(xc) # Names of special kewyword arguments that should not be used in xc_params SPECIAL_NAMES = ["dn_spin", "Nspin"] params = {} for func in xc: # If pylibxc functionals are used determine the default values from it if ":" in func: # This only works for pylibxc, not with PySCF if not config.use_pylibxc or "pylibxc" not in sys.modules: msg = "ext_params only work with pylibxc as the libxc backend, not with pyscf." raise NotImplementedError(msg) from pylibxc import LibXCFunctional fxc = func.split(":")[-1] try: f_xc = LibXCFunctional(int(fxc), 1) except ValueError: f_xc = LibXCFunctional(fxc, 1) fxc_params = dict(zip(f_xc.get_ext_param_names(), f_xc.get_ext_param_default_values())) # Analyze the signature for implemented functionals if func in IMPLEMENTED: sig = inspect.signature(IMPLEMENTED[func]) fxc_params = { param.name: param.default for param in sig.parameters.values() if param.default is not inspect.Parameter.empty } # Remove special names from the parsed parameters for special in SPECIAL_NAMES: if special in fxc_params: del fxc_params[special] # Append all parameters, warn if a parameter has been used before for name in fxc_params: if name in params: log.warning( f'External parameter "{name}" is used in the exchange AND correlation part. ' "It will be passed to both functionals if used in xc_params." ) params[name] = fxc_params[name] return params
[docs] def get_zeta(n_spin): """Calculate the relative spin polarization. Args: n_spin: Real-space electronic densities per spin channel. Returns: Relative spin polarization. """ # If only one spin is given return an array of ones as if the density only is in one channel if len(n_spin) == 1: return np.ones_like(n_spin[0]) return (n_spin[0] - n_spin[1]) / (n_spin[0] + n_spin[1])
[docs] def mock_xc(n, Nspin=1, **kwargs): """Mock exchange-correlation functional with no effect (spin-paired). Args: n: Real-space electronic density. Nspin: Number of spin states. Keyword Args: **kwargs: Throwaway arguments. Returns: Mock exchange-correlation energy density and potential. """ zeros = np.zeros_like(n) return zeros, np.array([zeros] * Nspin), None
#: Map functional names with their respective implementation. IMPLEMENTED = { i.__name__: i for i in ( mock_xc, gga_c_chachiyo, gga_c_chachiyo_spin, gga_c_pbe, gga_c_pbe_spin, gga_c_pbe_sol, gga_c_pbe_sol_spin, gga_x_chachiyo, gga_x_chachiyo_spin, gga_x_pbe, gga_x_pbe_spin, gga_x_pbe_sol, gga_x_pbe_sol_spin, lda_x, lda_x_spin, lda_c_pw, lda_c_pw_spin, lda_c_pw_mod, lda_c_pw_mod_spin, lda_c_vwn, lda_c_vwn_spin, lda_c_chachiyo, lda_c_chachiyo_spin, lda_c_chachiyo_mod, lda_c_chachiyo_mod_spin, lda_xc_gdsmfb, lda_xc_gdsmfb_spin, ) } #: Map functional shorthands to the actual functional names. XC_MAP = { # lda_x "1": "lda_x", "s": "lda_x", "lda": "lda_x", "slater": "lda_x", # lda_c_vwn "7": "lda_c_vwn", "vwn": "lda_c_vwn", "vwn5": "lda_c_vwn", # lda_c_pw "12": "lda_c_pw", "pw": "lda_c_pw", "pw92": "lda_c_pw", # lda_c_pw_mod "13": "lda_c_pw_mod", "pwmod": "lda_c_pw_mod", "pw92mod": "lda_c_pw_mod", # gga_x_pbe "101": "gga_x_pbe", "pbex": "gga_x_pbe", # gga_x_pbe_sol "116": "gga_x_pbe_sol", "pbesolx": "gga_x_pbe_sol", # gga_c_pbe "130": "gga_c_pbe", "pbec": "gga_c_pbe", # gga_c_pbe_sol "133": "gga_c_pbe_sol", "pbesolc": "gga_c_pbe_sol", # lda_c_chachiyo "287": "lda_c_chachiyo", "chachiyo": "lda_c_chachiyo", # gga_x_chachiyo "298": "gga_x_chachiyo", "chachiyox": "gga_x_chachiyo", # lda_c_chachiyo_mod "307": "lda_c_chachiyo_mod", "chachiyomod": "lda_c_chachiyo_mod", # gga_c_chachiyo "309": "gga_c_chachiyo", "chachiyoc": "gga_c_chachiyo", # lda_xc_gdsmfb "577": "lda_xc_gdsmfb", "gdsmfb": "lda_xc_gdsmfb", } #: Dictionary of common functional aliases. ALIAS = { "svwn": "slater,vwn5", "svwn5": "slater,vwn5", "spw92": "slater,pw92mod", "pbe": "pbex,pbec", "pbesol": "pbesolx,pbesolc", "chachiyo": "chachiyox,chachiyoc", }