.. _15_custom_functionals_spin: .. include:: ../../examples/15_custom_functionals_spin/README.rst ---- .. code-block:: python import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit from eminus.units import ry2ha from eminus.xc.lda_c_chachiyo import chachiyo_scaling Wigner-Seitz radii and the respective densities .. code-block:: python rs = np.array([2, 5, 10, 20, 50, 100]) n = 3 / (4 * np.pi * rs**3) Paramagnetic and ferromagnetic QMC values for the homogeneous electron gas .. code-block:: python ecp = -ry2ha(np.array([90.2, 56.3, 37.22, 23.00, 11.40, 6.379])) / 1000 ecf = -ry2ha(np.array([48.0, 31.2, 21.0, 13.55, 7.09, 4.146])) / 1000 Original Chachiyo parameters and our fitted value from the paramagnetic case .. code-block:: python b0 = 20.4562557 b1 = 27.4203609 fitted_b0 = 21.9469106 print(f"Original parameter:\nb1 = {b1:.7f}") Spin-polarized Chachiyo functional with additional fit parameters We won't do an extra DFT calculation with this functional, so the function only returns the correlation energies and no potentials .. code-block:: python def lda_c_chachiyo_spin(n, zeta, b0, b1): a0 = (np.log(2) - 1) / (2 * np.pi**2) a1 = (np.log(2) - 1) / (4 * np.pi**2) c0 = 20.4562557 c1 = 27.4203609 rs = (3 / (4 * np.pi * n)) ** (1 / 3) ec0 = a0 * np.log(1 + b0 / rs + c0 / rs**2) ec1 = a1 * np.log(1 + b1 / rs + c1 / rs**2) return ec0 + (ec1 - ec0) * chachiyo_scaling(zeta)[0] Again, define a wrapper function for the optimization In the ferromagnetic case we have a relative spin density of 1 (with 0 we would recover the paramagnetic case) .. code-block:: python def functional_wrapper(rs, b1): n = 3 / (4 * np.pi * rs**3) return lda_c_chachiyo_spin(n, 1, fitted_b0, b1) Do the fit over the QMC data One can see that our fitted value is vastly different from the one derived by Karasiev with :code:`b1=28.3559732` .. code-block:: python fitted_b1, _ = curve_fit(functional_wrapper, rs, ecf) print(f"\nFitted parameter:\nb1 = {fitted_b1[0]:.7f}") # Fitted parameter: # b1 = 26.9515208 Plot the error of the correlation energies compared to the QMC data for Chachiyo, Karasiev, and our functional Find the plot named :code:`correlation_energy_error_spin.png` .. image:: correlation_energy_error_spin.png :align: center .. code-block:: python plt.style.use("../eminus.mplstyle") plt.figure() plt.axhline(c="dimgrey", ls="--", marker="") plt.plot(rs, 1000 * (lda_c_chachiyo_spin(n, 1, b0, b1) - ecf), label="Chachiyo") plt.plot(rs, 1000 * (lda_c_chachiyo_spin(n, 1, 21.7392245, 28.3559732) - ecf), label="Karasiev") plt.plot(rs, 1000 * (lda_c_chachiyo_spin(n, 1, fitted_b0, *fitted_b1) - ecf), label="mod. Chachiyo") plt.xlabel(r"$r_s$") plt.ylabel(r"$E_c^\mathrm{F} - E_c^{\mathrm{F,QMC}}$ [m$E_\mathrm{h}$]") plt.legend() plt.savefig("correlation_energy_error_spin.png") Lastly, let us compare the mean absolute errors (MAE) of these functional variants One could also compare the root mean square error but the result would be obvious since our fit minimizes this error .. code-block:: python def mae(data, ref): return 1000 * np.sum(np.abs(data - ref)) / len(ref) Begin with the spin-paired case... .. code-block:: python print("\nMAE (spin-paired) [mEh]:") print(f"Chachiyo: {mae(lda_c_chachiyo_spin(n, 0, b0, b1), ecp):.3f}") print(f"Karasiev: {mae(lda_c_chachiyo_spin(n, 0, 21.7392245, 28.3559732), ecp):.3f}") print(f"Modified: {mae(lda_c_chachiyo_spin(n, 0, fitted_b0, *fitted_b1), ecp):.3f}") # MAE (spin-paired) [mEh]: # Chachiyo: 0.533 # Karasiev: 0.322 # Modified: 0.355 ...and end with the spin-polarized case .. code-block:: python print("\nMAE (spin-polarized) [mEh]:") print(f"Chachiyo: {mae(lda_c_chachiyo_spin(n, 1, b0, b1), ecf):.3f}") print(f"Karasiev: {mae(lda_c_chachiyo_spin(n, 1, 21.7392245, 28.3559732), ecf):.3f}") print(f"Modified: {mae(lda_c_chachiyo_spin(n, 1, fitted_b0, *fitted_b1), ecf):.3f}") # MAE (spin-polarized) [mEh]: # Chachiyo: 0.167 # Karasiev: 0.213 # Modified: 0.150 One can see that our functional outperforms the original Chachiyo functional in both cases (obviously since we compare to the data we fitted to) Surprisingly, the parameterization from Karasiev performs a bit better in the paramagnetic case but is worse in the ferromagnetic case Our functional seems to perform well in both cases Downloads: :download:`15_custom_functionals_spin.py <../../examples/15_custom_functionals_spin/15_custom_functionals_spin.py>` :download:`correlation_energy_error_spin.png <../../examples/15_custom_functionals_spin/correlation_energy_error_spin.png>`