.. SPDX-FileCopyrightText: 2021 The eminus developers SPDX-License-Identifier: Apache-2.0 .. _index: Home **** .. meta:: :description: Documentation website for the eminus code. :author: Wanja Timm Schulze .. toctree:: :caption: Contents :maxdepth: 1 :numbered: :hidden: self overview.rst installation.rst theory.rst _examples/examples.rst modules.rst citation.rst changelog.rst license.rst nomenclature.rst further.rst .. image:: /_static/logo/eminus.svg :class: only-light :align: center :width: 65% .. image:: /_static/logo/eminus_dark.svg :class: only-dark :align: center :width: 65% | .. grid:: 1 1 2 2 :gutter: 2 .. grid-item-card:: :octicon:`rocket` Installation :link: installation :link-type: doc :columns: 6 .. grid-item-card:: :octicon:`code` API reference :link: modules :link-type: doc :columns: 6 .. grid-item-card:: :octicon:`book` User guide :link: _examples/examples :link-type: doc :columns: 6 .. grid-item-card:: :octicon:`tools` Source code :link: https://gitlab.com/wangenau/eminus :link-type: url :columns: 6 .. image:: https://img.shields.io/pypi/v/eminus?color=1a962b&logo=python&logoColor=a0dba2&label=Version :target: https://pypi.org/project/eminus .. image:: https://img.shields.io/pypi/pyversions/eminus?color=1a962b&logo=python&logoColor=a0dba2&label=Python :target: https://wangenau.gitlab.io/eminus/installation.html .. image:: https://img.shields.io/badge/license-Apache2.0-1a962b?logo=python&logoColor=a0dba2&label=License :target: https://wangenau.gitlab.io/eminus/license.html .. image:: https://img.shields.io/gitlab/pipeline-coverage/wangenau%2Feminus?branch=main&color=1a962b&logo=gitlab&logoColor=a0dba2&label=Coverage :target: https://wangenau.gitlab.io/eminus/htmlcov .. image:: https://img.shields.io/badge/Chat-Discord-1a962b?logo=discord&logoColor=a0dba2 :target: https://discord.gg/k2XwdMtVec eminus is a pythonic electronic structure theory code. It implements plane wave density functional theory (DFT) with self-interaction correction (SIC) functionalities. The goal is to create a simple code that is easy to read and easy to extend while using minimal dependencies. It is built upon the `DFT++ `_ pragmas proposed by Tomas Arias et al. that aim to let programming languages and theory coincide. This can be shown by, e.g., solving the Poisson equation. In the operator notation of DFT++ the equation reads .. math:: \phi(\boldsymbol r) = -4\pi\mathcal L^{-1}\mathcal O\mathcal J n(\boldsymbol r). The corresponding Python code (implying that the operators have been implemented properly) reads .. code-block:: python def get_phi(atoms, n): return -4 * np.pi * atoms.Linv(atoms.O(atoms.J(n)))