Coverage for eminus / atoms.py: 98.15%
271 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-11-21 14:20 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-11-21 14:20 +0000
1# SPDX-FileCopyrightText: 2021 The eminus developers
2# SPDX-License-Identifier: Apache-2.0
3"""Atoms class definition."""
5import math
6import numbers
8import numpy as np
9from scipy.fft import next_fast_len
11from . import backend as xp
12from . import operators
13from .kpoints import KPoints
14from .logger import create_logger, get_level, log
15from .occupations import Occupations
16from .tools import center_of_mass, cutoff2gridspacing, inertia_tensor
17from .utils import atom2charge, BaseObject, molecule2list
20class Atoms(BaseObject):
21 """Atoms object that holds all system and cell parameters.
23 Args:
24 atom: Atom symbols.
26 A string can be given, e.g., with :code:`CH4` that will be parsed to
27 :code:`["C", "H", "H", "H", "H"]`. When calculating atoms one can directly provide the
28 charge, e.g., with :code:`Li-q3`.
29 pos: Atom positions.
31 Keyword Args:
32 ecut: Cut-off energy.
34 Defaults to 30 Eh (ca. 816 eV).
35 a: Cell size or vacuum size.
37 Floats will create a cubic unit cell. Defaults to a 20 a0 (ca. 10.5 A) cubic cell.
38 Scaled lattice vectors can be given to build a custom cell.
39 spin: Number of unpaired electrons.
41 This is the difference between the number of up and down electrons.
42 charge: Charge of the system.
43 unrestricted: Handling of spin.
45 :code:`False` for restricted, :code:`True` for unrestricted, and :code:`None` for
46 automatic detection.
47 center: Center the system inside the cell.
49 Aligns the geometric center of mass with the center of the call and rotates the system,
50 such that its geometric moment of inertia aligns with the coordinate axes. Can be one of
51 bool, "shift", and "rotate".
52 verbose: Level of output.
54 Can be one of "critical", "error", "warning", "info" (default), or "debug". An integer
55 value can be used as well, where larger numbers mean more output, starting from 0.
56 None will use the global logger verbosity value.
57 """
59 def __init__(
60 self,
61 atom,
62 pos,
63 ecut=30,
64 a=20,
65 spin=None,
66 charge=0,
67 unrestricted=None,
68 center=False,
69 verbose=None,
70 ):
71 """Initialize the Atoms object."""
72 # Set the input parameters (the ordering is important)
73 self._log = create_logger(self) #: Logger object.
74 self.verbose = verbose #: Verbosity level.
75 self.occ = Occupations() #: Occupations object.
76 self.atom = atom #: Atom symbols.
77 self.pos = pos #: Atom positions.
78 self.a = a #: Cell/Vacuum size.
79 self.ecut = ecut #: Cut-off energy.
80 self.center = center #: Enables centering the system in the cell.
81 self.charge = charge #: System charge.
82 self.spin = spin #: Number of unpaired electrons.
83 self.unrestricted = unrestricted #: Enables unrestricted spin handling.
84 self.kpts = KPoints("sc", self.a) #: KPoints object.
86 # Initialize other attributes
87 self.occ.fill() #: Fill states from the given input.
88 self.is_built = False #: Determines the Atoms object build status.
89 self.clear()
91 # ### Class properties ###
93 @property
94 def atom(self):
95 """Atom symbols."""
96 return self._atom
98 @atom.setter
99 def atom(self, value):
100 # Quick option to set the charge for single atoms
101 if isinstance(value, str) and "-q" in value:
102 atom, Z = value.split("-q")
103 self._atom = [atom]
104 self._Natoms = 1
105 self.Z = int(Z)
106 else:
107 # If a string, i.e., chemical formula is given convert it to a list of chemical symbols
108 if isinstance(value, str):
109 self._atom = molecule2list(value)
110 else:
111 self._atom = value
112 # Get the number of atoms and determine the charges
113 self._Natoms = len(self._atom)
114 self.Z = None
116 @property
117 def pos(self):
118 """Atom positions."""
119 return self._pos
121 @pos.setter
122 def pos(self, value):
123 # We need atom positions as a two-dimensional array
124 self._pos = xp.atleast_2d(xp.asarray(value, dtype=float))
125 if self.Natoms != len(self._pos):
126 msg = (
127 f"Mismatch between number of atoms ({self.Natoms}) and number of "
128 f"coordinates ({len(self._pos)})."
129 )
130 raise ValueError(msg)
131 # The structure factor changes when changing pos
132 self.is_built = False
134 @property
135 def ecut(self):
136 """Cut-off energy."""
137 return self._ecut
139 @ecut.setter
140 def ecut(self, value):
141 self._ecut = value
142 # Calculate the sampling from the cut-off energy
143 s = xp.asarray(xp.linalg.norm(self.a, axis=1) / cutoff2gridspacing(value), dtype=int)
144 # Multiply by two and add one to match PWDFT.jl
145 s = 2 * s + 1
146 # Calculate a fast length to optimize the FFT calculations
147 self.s = [int(next_fast_len(i)) for i in s]
148 # The cell discretization changes when changing s or ecut
149 self.is_built = False
151 @property
152 def a(self):
153 """Cell/Vacuum size."""
154 return self._a
156 @a.setter
157 def a(self, value):
158 # Build a cubic cell if a number or 1d-array is given
159 if xp.asarray(value).ndim <= 1:
160 self._a = xp.asarray(value, dtype=float) * xp.eye(3)
161 # Otherwise scaled cell vectors are given
162 else:
163 self._a = xp.asarray(value, dtype=float)
164 # Update ecut and s if it has been set before
165 if hasattr(self, "ecut"):
166 self.ecut = self.ecut
167 # Calculate the unit cell volume
168 self._Omega = abs(xp.linalg.det(self._a))
169 if hasattr(self, "kpts"):
170 self.kpts.a = self._a
171 # The cell changes when changing a
172 self.is_built = False
174 @property
175 def spin(self):
176 """Number of unpaired electrons."""
177 return self.occ.spin
179 @spin.setter
180 def spin(self, value):
181 self.occ.spin = value
183 @property
184 def charge(self):
185 """System charge."""
186 return self.occ.charge
188 @charge.setter
189 def charge(self, value):
190 self.occ.charge = value
192 @property
193 def unrestricted(self):
194 """Enables unrestricted spin handling."""
195 return self.occ.Nspin == 2
197 @unrestricted.setter
198 def unrestricted(self, value):
199 if value is None:
200 self.occ.Nspin = value
201 else:
202 self.occ.Nspin = value + 1
204 @property
205 def center(self):
206 """Enables centering the system in the cell."""
207 return self._center
209 @center.setter
210 def center(self, value):
211 if isinstance(value, str):
212 self._center = value.lower()
213 if self._center not in {"rotate", "shift", "recentered"}:
214 log.error(f"{self._center} is not a recognized center method.")
215 else:
216 self._center = value
217 # Do nothing when recentering
218 if self._center == "recentered":
219 return
220 # Center system such that the geometric inertia tensor will be diagonal
221 # Rotate before shifting!
222 if self._center is True or self._center == "rotate":
223 I = inertia_tensor(self.pos)
224 _, eigvecs = xp.linalg.eigh(I)
225 self.pos = (xp.linalg.inv(eigvecs) @ self.pos.T).T
226 # Shift system such that its geometric center of mass is in the center of the cell
227 if self._center is True or self._center == "shift":
228 com = center_of_mass(self.pos)
229 self.pos = self.pos - (com - xp.sum(self.a, axis=0) / 2)
230 # The structure factor changes when changing pos
231 self.is_built = False
233 @property
234 def verbose(self):
235 """Verbosity level."""
236 return self._verbose
238 @verbose.setter
239 def verbose(self, value):
240 # If no verbosity is given use the global verbosity level
241 if value is None:
242 value = log.verbose
243 self._verbose = get_level(value)
244 self._log.verbose = self._verbose
246 # ### Class properties with a setter outside of the init method ###
248 @property
249 def f(self):
250 """Occupation numbers per state."""
251 return self.occ.f
253 @f.setter
254 def f(self, value):
255 # Pass through to the Occupations object
256 self.occ.f = value
258 @property
259 def s(self):
260 """Real-space sampling of the cell."""
261 return self._s
263 @s.setter
264 def s(self, value):
265 # Choose the same sampling for every direction if an integer is given
266 if isinstance(value, numbers.Integral):
267 value = value * xp.ones(3, dtype=int)
268 self._s = xp.asarray(value, dtype=int)
269 self._Ns = int(xp.prod(self._s))
270 # The cell discretization changes when changing s
271 self.is_built = False
273 @property
274 def Z(self):
275 """Valence charge per atom."""
276 return self._Z
278 @Z.setter
279 def Z(self, value):
280 # Assume same charges for all atoms if an integer is given
281 if isinstance(value, numbers.Integral):
282 value = value * xp.ones(self.Natoms, dtype=int)
283 elif isinstance(value, dict):
284 value = [value[ia] for ia in self.atom]
285 # Get the valence charges from the GTH files
286 elif value is None or isinstance(value, str):
287 value = atom2charge(self.atom, value)
288 self._Z = xp.asarray(value, dtype=int)
289 if self.Natoms != len(self._Z):
290 msg = (
291 f"Mismatch between number of atoms ({self.Natoms}) and number of "
292 f"charges ({len(self._Z)})."
293 )
294 raise ValueError(msg)
295 # Get the number of calculated electrons and pass it to occ
296 self.occ.Nelec = xp.sum(self._Z) - self.charge
297 if self.occ.Nspin and self.occ.bands < self.occ.Nelec * self.occ.Nspin // 2:
298 log.warning("The number of bands is too small, reset to the minimally needed amount.")
299 self.occ.bands = 0
301 # ### Read-only properties ###
303 @property
304 def Natoms(self):
305 """Number of atoms."""
306 return self._Natoms
308 @property
309 def Ns(self):
310 """Number of real-space grid points."""
311 return self._Ns
313 @property
314 def Omega(self):
315 """Unit cell volume."""
316 return self._Omega
318 @property
319 def r(self):
320 """Real-space sampling points."""
321 return self._r
323 @property
324 def active(self):
325 """Mask for active G-vectors."""
326 return self._active
328 @property
329 def G(self):
330 """G-vectors."""
331 return self._G
333 @property
334 def G2(self):
335 """Squared magnitudes of G-vectors."""
336 return self._G2
338 @property
339 def G2c(self):
340 """Truncated squared magnitudes of G-vectors."""
341 return self._G2c
343 @property
344 def Gk2(self):
345 """Squared magnitudes of G+k-vectors."""
346 return self._Gk2
348 @property
349 def Gk2c(self):
350 """Truncated squared magnitudes of G+k-vectors."""
351 return self._Gk2c
353 @property
354 def Sf(self):
355 """Structure factor per atom."""
356 return self._Sf
358 @property
359 def dV(self):
360 """Volume element to multiply when integrating field properties."""
361 return self.Omega / self._Ns
363 @property
364 def _atoms(self):
365 """Return the Atoms object itself."""
366 # This way we can access the object from Atoms and SCF classes with the same code
367 return self
369 # ### Class methods ###
371 def build(self):
372 """Build all parameters of the Atoms object."""
373 self.kpts.build()
374 self._sample_unit_cell()
375 self.occ.wk = self.kpts.wk # Pass the weights of k-points to the Occupations object
376 self.occ.fill()
377 self.is_built = True
378 return self
380 kernel = build
382 def recenter(self, center=None):
383 """Recenter the system inside the cell.
385 Keyword Args:
386 center: Point to center the system around.
387 """
388 com = center_of_mass(self.pos)
389 if center is None:
390 self.pos = self.pos - (com - xp.sum(self.a, axis=0) / 2)
391 else:
392 center = xp.asarray(center, dtype=float)
393 self.pos = self.pos - (com - center)
394 if self.Sf is not None:
395 # Recalculate the structure factor since it depends on the atom positions
396 self._Sf = xp.exp(1j * (self.G @ self.pos.T)).T
397 self._center = "recentered"
398 return self
400 def set_k(self, k, wk=None):
401 """Interface to set custom k-points.
403 Args:
404 k: k-point coordinates.
406 Keyword Args:
407 wk: k-point weights.
408 """
409 self.kpts.build()
410 self.kpts._k = xp.atleast_2d(xp.asarray(k, dtype=float))
411 if wk is None:
412 self.kpts._wk = xp.ones(len(self.kpts._k)) / len(self.kpts._k)
413 else:
414 self.kpts._wk = xp.asarray(wk, dtype=float)
415 self.kpts._Nk = len(self.kpts._wk)
416 self.kpts._kmesh = None
417 self.occ.wk = self.kpts.wk
418 self._sample_unit_cell()
419 return self
421 def clear(self):
422 """Initialize or clear parameters that will be built out of the inputs."""
423 self._r = None # Sample points in cell
424 self._active = None # Mask for active G-vectors
425 self._G = None # G-vectors
426 self._G2 = None # Squared magnitudes of G-vectors
427 self._G2c = None # Truncated squared magnitudes of G-vectors
428 self._Gk2 = None # Squared magnitudes of G+k-vectors
429 self._Gk2c = None # Truncated squared magnitudes of G+k-vectors
430 self._Sf = None # Structure factor
431 self.is_built = False # Flag to determine if the object was built or not
432 return self
434 def _get_index_matrices(self):
435 """Build index matrices M and N to build the real and reciprocal space samplings.
437 The matrices are using C ordering (the last index is the fastest).
439 Returns:
440 Index matrices.
441 """
442 # Build index matrix M
443 # ms = np.arange(self._Ns)
444 # m1 = np.floor(ms / (self.s[2] * self.s[1])) % self.s[0]
445 # m2 = np.floor(ms / self.s[2]) % self.s[1]
446 # m3 = ms % self.s[2]
447 # M = np.column_stack((m1, m2, m3))
448 M = xp.asarray(np.indices(self.s, dtype=float).transpose(1, 2, 3, 0).reshape(-1, 3))
449 # Build index matrix N
450 N = M - (self.s / 2 < M) * self.s
451 return M, N
453 def _sample_unit_cell(self):
454 """Build the real-space sampling and all G-vector parameters."""
455 # Calculate index matrices
456 M, N = self._get_index_matrices()
457 # Build the real-space sampling
458 self._r = M @ xp.linalg.inv(xp.diag(xp.astype(self.s, float))) @ self.a
459 # Build G-vectors
460 self._G = 2 * math.pi * N @ xp.linalg.inv(self.a.T)
461 # Calculate squared magnitudes of G-vectors
462 self._G2 = xp.linalg.norm(self.G, axis=1) ** 2
463 # Calculate the G2 restriction
464 self._active = [
465 xp.nonzero(2 * self.ecut >= xp.linalg.norm(self.G + self.kpts.k[ik], axis=1) ** 2)
466 for ik in range(self.kpts.Nk)
467 ]
468 self._G2c = self._G2[xp.nonzero(2 * self.ecut >= self._G2)]
469 # Calculate G+k-vectors
470 self._Gk2 = xp.stack(
471 [xp.linalg.norm(self.G + self.kpts.k[ik], axis=1) ** 2 for ik in range(self.kpts.Nk)]
472 )
473 self._Gk2c = [self.Gk2[ik][self._active[ik]] for ik in range(self.kpts.Nk)]
474 # Calculate the structure factor per atom
475 self._Sf = xp.exp(1j * (self.G @ self.pos.T)).T
477 # Create the grid used for the non-wave function fields and append it to the end
478 self._active.append(xp.nonzero(2 * self.ecut >= self._G2))
479 self._Gk2 = xp.vstack((self._Gk2, self._G2))
480 self._Gk2c.append(self._G2c)
482 O = operators.O
483 L = operators.L
484 Linv = operators.Linv
485 K = operators.K
486 T = operators.T
487 I = operators.I
488 J = operators.J
489 Idag = operators.Idag
490 Jdag = operators.Jdag
492 def __repr__(self):
493 """Print the parameters stored in the Atoms object."""
494 out = "Atom Valence Position"
495 for i in range(self.Natoms):
496 out += (
497 f"\n{self.atom[i]:>3} {self.Z[i]:>6} "
498 f"{self.pos[i, 0]:10.5f} {self.pos[i, 1]:10.5f} {self.pos[i, 2]:10.5f}"
499 )
500 return out