Coverage for eminus/gth.py: 98.29%
117 statements
« prev ^ index » next coverage.py v7.6.4, created at 2024-11-01 11:47 +0000
« prev ^ index » next coverage.py v7.6.4, created at 2024-11-01 11:47 +0000
1# SPDX-FileCopyrightText: 2021 The eminus developers
2# SPDX-License-Identifier: Apache-2.0
3"""Utilities to use Goedecker, Teter, and Hutter pseudopotentials."""
5import numpy as np
7from .io import read_gth
8from .utils import Ylm_real
11class GTH:
12 """GTH object that holds non-local projectors and parameters for all atoms in the SCF object.
14 Keyword Args:
15 scf: SCF object.
16 """
18 def __init__(self, scf=None):
19 """Initialize the GTH object."""
20 # Allow creating an empty instance (used when loading GTH objects from JSON files)
21 if scf is not None:
22 atoms = scf.atoms
24 # Set up a dictionary with all GTH parameters
25 self.GTH = {} #: Dictionary with GTH parameters per atom type.
26 for ia in range(atoms.Natoms):
27 # Skip if the atom is already in the dictionary
28 if atoms.atom[ia] in self.GTH:
29 continue
30 self.GTH[atoms.atom[ia]] = read_gth(atoms.atom[ia], atoms.Z[ia], psp_path=scf.psp)
32 # Initialize the non-local potential
33 NbetaNL, prj2beta, betaNL = init_gth_nonloc(atoms, self)
34 self.NbetaNL = NbetaNL #: Number of projector functions for the non-local potential.
35 self.prj2beta = prj2beta #: Index matrix to map to the correct projector function.
36 self.betaNL = betaNL #: Atomic-centered projector functions.
38 def __getitem__(self, key):
39 """Allow accessing the GTH parameters of an atom by indexing the GTH object."""
40 return self.GTH[key]
42 def __repr__(self):
43 """Print a short overview over the values stored in the GTH object."""
44 return f"NbetaNL: {self.NbetaNL}\nGTH values for: {', '.join(list(self.GTH))}"
47def init_gth_loc(scf):
48 """Initialize parameters to calculate local contributions of GTH pseudopotentials.
50 Reference: Phys. Rev. B 54, 1703.
52 Args:
53 scf: SCF object.
55 Returns:
56 Local GTH potential contribution.
57 """
58 atoms = scf.atoms
59 species = set(atoms.atom)
60 omega = 1 # Normally this would be det(atoms.a), but Arias notation is off by this factor
62 Vloc = np.zeros_like(atoms.G2)
63 for isp in species:
64 psp = scf.gth[isp]
65 rloc = psp["rloc"]
66 Zion = psp["Zion"]
67 c1 = psp["cloc"][0]
68 c2 = psp["cloc"][1]
69 c3 = psp["cloc"][2]
70 c4 = psp["cloc"][3]
72 rlocG2 = atoms.G2 * rloc**2
73 rlocG22 = rlocG2**2
74 exprlocG2 = np.exp(-0.5 * rlocG2)
75 # Ignore the division by zero for the first elements
76 # One could do some proper indexing with [1:] but indexing is slow
77 with np.errstate(divide="ignore", invalid="ignore"):
78 Vsp = -4 * np.pi * Zion / omega * exprlocG2 / atoms.G2 + np.sqrt(
79 (2 * np.pi) ** 3
80 ) * rloc**3 / omega * exprlocG2 * (
81 c1
82 + c2 * (3 - rlocG2)
83 + c3 * (15 - 10 * rlocG2 + rlocG22)
84 + c4 * (105 - 105 * rlocG2 + 21 * rlocG22 - rlocG2**3)
85 )
86 # Special case for G=(0,0,0), same as in QE
87 Vsp[0] = 2 * np.pi * Zion * rloc**2 + (2 * np.pi) ** 1.5 * rloc**3 * (
88 c1 + 3 * c2 + 15 * c3 + 105 * c4
89 )
91 # Sum up the structure factor for every species
92 Sf = np.zeros(len(atoms.Sf[0]), dtype=complex)
93 for ia in range(atoms.Natoms):
94 if atoms.atom[ia] == isp:
95 Sf += atoms.Sf[ia]
96 Vloc += np.real(atoms.J(Vsp * Sf))
97 return Vloc
100def init_gth_nonloc(atoms, gth):
101 """Initialize parameters to calculate non-local contributions of GTH pseudopotentials.
103 Adapted from https://github.com/f-fathurrahman/PWDFT.jl/blob/master/src/PsPotNL.jl
105 Reference: Phys. Rev. B 54, 1703.
107 Args:
108 atoms: Atoms object.
109 gth: GTH object.
111 Returns:
112 NbetaNL, prj2beta, and betaNL.
113 """
114 prj2beta = np.zeros((3, atoms.Natoms, 4, 7), dtype=int)
115 prj2beta += -1 # Set to an invalid index
117 NbetaNL = 0
118 for ia in range(atoms.Natoms):
119 psp = gth[atoms.atom[ia]]
120 for l in range(psp["lmax"]):
121 for m in range(-l, l + 1):
122 for iprj in range(psp["Nproj_l"][l]):
123 NbetaNL += 1
124 prj2beta[iprj, ia, l, m + psp["lmax"] - 1] = NbetaNL
126 betaNL = []
127 for ik in range(atoms.kpts.Nk):
128 betaNL_ik = np.empty((len(atoms.Gk2c[ik]), NbetaNL), dtype=complex)
129 ibeta = 0
130 gk = atoms.G[atoms.active[ik]] + atoms.kpts.k[ik]
131 Gkm = np.sqrt(atoms.Gk2c[ik])
132 for ia in range(atoms.Natoms):
133 # It is important to transform the structure factor to make both notations compatible
134 Sf = atoms.Idag(atoms.J(atoms.Sf[ia], ik), ik)
135 psp = gth[atoms.atom[ia]]
136 for l in range(psp["lmax"]):
137 for m in range(-l, l + 1):
138 for iprj in range(psp["Nproj_l"][l]):
139 betaNL_ik[:, ibeta] = (
140 (-1j) ** l
141 * Ylm_real(l, m, gk)
142 * eval_proj_G(psp, l, iprj + 1, Gkm, atoms.Omega)
143 * Sf
144 )
145 ibeta += 1
146 betaNL.append(betaNL_ik)
147 return NbetaNL, prj2beta, betaNL
150def calc_Vnonloc(scf, ik, spin, W):
151 """Calculate the non-local pseudopotential, applied on the basis functions W.
153 Adapted from https://github.com/f-fathurrahman/PWDFT.jl/blob/master/src/op_V_Ps_nloc.jl
155 Reference: Phys. Rev. B 54, 1703.
157 Args:
158 scf: SCF object.
159 ik: k-point index.
160 spin: Spin variable to track whether to do the calculation for spin up or down.
161 W: Expansion coefficients of unconstrained wave functions in reciprocal space.
163 Returns:
164 Non-local GTH potential contribution.
165 """
166 atoms = scf.atoms
168 Vpsi = np.zeros_like(W[ik][spin], dtype=complex)
169 if scf.pot != "gth" or scf.gth.NbetaNL == 0: # Only calculate the non-local part if necessary
170 return Vpsi
172 betaNL_psi = (W[ik][spin].conj().T @ scf.gth.betaNL[ik]).conj()
173 for ia in range(atoms.Natoms):
174 psp = scf.gth[atoms.atom[ia]]
175 for l in range(psp["lmax"]):
176 for m in range(-l, l + 1):
177 for iprj in range(psp["Nproj_l"][l]):
178 ibeta = scf.gth.prj2beta[iprj, ia, l, m + psp["lmax"] - 1] - 1
179 for jprj in range(psp["Nproj_l"][l]):
180 jbeta = scf.gth.prj2beta[jprj, ia, l, m + psp["lmax"] - 1] - 1
181 hij = psp["h"][l, iprj, jprj]
182 Vpsi += hij * betaNL_psi[:, jbeta] * scf.gth.betaNL[ik][:, ibeta, None]
183 # We have to multiply with the cell volume, because of different orthogonalization methods
184 return atoms.O(Vpsi)
187def eval_proj_G(psp, l, iprj, Gm, Omega): # noqa: PLR0911
188 """Evaluate GTH projector functions in G-space.
190 Adapted from https://github.com/f-fathurrahman/PWDFT.jl/blob/master/src/PsPot_GTH.jl
192 Reference: Phys. Rev. B 54, 1703.
194 Args:
195 psp: GTH parameters.
196 l: Angular momentum number.
197 iprj: Nproj_l index.
198 Gm: Magnitude of G-vectors.
199 Omega: Unit cell volume.
201 Returns:
202 GTH projector.
203 """
204 rrl = psp["rp"][l]
205 Gr2 = (Gm * rrl) ** 2
207 prefactor = 4 * np.pi ** (5 / 4) * np.sqrt(2 ** (l + 1) * rrl ** (2 * l + 3) / Omega)
208 Vprj = prefactor * np.exp(-0.5 * Gr2)
210 if l == 0: # s-channel
211 if iprj == 1:
212 return Vprj
213 if iprj == 2:
214 return 2 / np.sqrt(15) * (3 - Gr2) * Vprj
215 if iprj == 3:
216 return (4 / 3) / np.sqrt(105) * (15 - 10 * Gr2 + Gr2**2) * Vprj
217 elif l == 1: # p-channel
218 if iprj == 1:
219 return 1 / np.sqrt(3) * Gm * Vprj
220 if iprj == 2:
221 return 2 / np.sqrt(105) * Gm * (5 - Gr2) * Vprj
222 if iprj == 3:
223 return (4 / 3) / np.sqrt(1155) * Gm * (35 - 14 * Gr2 + Gr2**2) * Vprj
224 elif l == 2: # d-channel
225 if iprj == 1:
226 return 1 / np.sqrt(15) * Gm**2 * Vprj
227 if iprj == 2:
228 return (2 / 3) / np.sqrt(105) * Gm**2 * (7 - Gr2) * Vprj
229 elif l == 3: # f-channel
230 # Only one projector
231 return 1 / np.sqrt(105) * Gm**3 * Vprj
233 msg = f"No projector found for l={l}."
234 raise ValueError(msg)