Coverage for eminus/tools.py: 97.46%

197 statements  

« prev     ^ index     » next       coverage.py v7.6.4, created at 2024-11-01 11:47 +0000

1# SPDX-FileCopyrightText: 2021 The eminus developers 

2# SPDX-License-Identifier: Apache-2.0 

3"""Various tools to check physical properties.""" 

4 

5import numpy as np 

6from scipy.linalg import norm 

7from scipy.optimize import minimize_scalar, root_scalar 

8 

9from .dft import get_epsilon, get_epsilon_unocc 

10from .gga import get_grad_field, get_tau 

11from .logger import log 

12from .utils import handle_k 

13 

14 

15def cutoff2gridspacing(E): 

16 """Convert plane wave energy cut-off to a real-space grid spacing. 

17 

18 Reference: Phys. Rev. B 54, 14362. 

19 

20 Args: 

21 E: Energy in Hartree. 

22 

23 Returns: 

24 Grid spacing in Bohr. 

25 """ 

26 return np.pi / np.sqrt(2 * E) 

27 

28 

29def gridspacing2cutoff(h): 

30 """Convert real-space grid spacing to plane wave energy cut-off. 

31 

32 Reference: Phys. Rev. B 54, 14362. 

33 

34 Args: 

35 h: Grid spacing in Bohr. 

36 

37 Returns: 

38 Cut-off in Hartree. 

39 """ 

40 return 0.5 * (np.pi / h) ** 2 

41 

42 

43def center_of_mass(coords, masses=None): 

44 """Calculate the center of mass for a set of coordinates and masses. 

45 

46 Args: 

47 coords: Array of real-space coordinates. 

48 

49 Keyword Args: 

50 masses: Mass or weight for each coordinate. 

51 

52 Returns: 

53 Center of mass. 

54 """ 

55 if masses is None: 

56 masses = np.ones(len(coords)) 

57 return np.sum(masses * coords.T, axis=1) / np.sum(masses) 

58 

59 

60@handle_k 

61def orbital_center(obj, psirs): 

62 """Calculate the orbital center of masses, e.g., from localized orbitals. 

63 

64 Args: 

65 obj: Atoms or SCF object. 

66 psirs: Set of orbitals in real-space. 

67 

68 Returns: 

69 Center of masses. 

70 """ 

71 atoms = obj._atoms 

72 

73 coms = [np.empty((0, 3))] * 2 

74 Ncom = psirs.shape[2] 

75 for spin in range(atoms.occ.Nspin): 

76 coms_spin = np.empty((Ncom, 3)) 

77 

78 # Squared orbitals 

79 psi2 = np.real(psirs[spin].conj() * psirs[spin]) 

80 for i in range(Ncom): 

81 coms_spin[i] = center_of_mass(atoms.r, psi2[:, i]) 

82 coms[spin] = coms_spin 

83 return coms 

84 

85 

86def inertia_tensor(coords, masses=None): 

87 """Calculate the inertia tensor for a set of coordinates and masses. 

88 

89 Reference: https://en.wikipedia.org/wiki/Moment_of_inertia 

90 

91 Args: 

92 coords: Array of real-space coordinates. 

93 

94 Keyword Args: 

95 masses: Mass or weight for each coordinate. 

96 

97 Returns: 

98 Inertia tensor. 

99 """ 

100 if masses is None: 

101 masses = np.ones(len(coords)) 

102 

103 # The inertia tensor for a set of point masses can be calculated with a simple summation 

104 # https://en.wikipedia.org/wiki/Moment_of_inertia#Definition_2 

105 I = np.empty((3, 3)) 

106 I[0, 0] = np.sum(masses * (coords[:, 1] ** 2 + coords[:, 2] ** 2)) 

107 I[1, 1] = np.sum(masses * (coords[:, 0] ** 2 + coords[:, 2] ** 2)) 

108 I[2, 2] = np.sum(masses * (coords[:, 0] ** 2 + coords[:, 1] ** 2)) 

109 I[0, 1] = I[1, 0] = -np.sum(masses * (coords[:, 0] * coords[:, 1])) 

110 I[0, 2] = I[2, 0] = -np.sum(masses * (coords[:, 0] * coords[:, 2])) 

111 I[1, 2] = I[2, 1] = -np.sum(masses * (coords[:, 1] * coords[:, 2])) 

112 return I 

113 

114 

115def get_dipole(scf, n=None): 

116 """Calculate the electric dipole moment. 

117 

118 This function does not account for periodicity, it may be a good idea to center the system. 

119 

120 Reference: J. Chem. Phys. 155, 224109. 

121 

122 Args: 

123 scf: SCF object. 

124 

125 Keyword Args: 

126 n: Real-space electronic density. 

127 

128 Returns: 

129 Electric dipole moment in e * Bohr. 

130 """ 

131 atoms = scf.atoms 

132 if n is None: 

133 if scf.n is None: 

134 log.error("There is no density to calculate a dipole moment.") 

135 return 0 

136 n = scf.n 

137 

138 # Diple moment: mu = \sum Z pos - \int n(r) r dr 

139 mu = np.zeros(3) 

140 for i in range(atoms.Natoms): 

141 mu += atoms.Z[i] * atoms.pos[i] 

142 

143 for dim in range(3): 

144 mu[dim] -= atoms.dV * np.sum(n * atoms.r[:, dim]) 

145 return mu 

146 

147 

148def get_ip(scf): 

149 """Calculate the ionization potential by calculating the negative HOMO energy. 

150 

151 Reference: Physica 1, 104. 

152 

153 Args: 

154 scf: SCF object. 

155 

156 Returns: 

157 Ionization potential in Hartree. 

158 """ 

159 scf.kpts._assert_gamma_only() 

160 epsilon = get_epsilon(scf, scf.W)[0] 

161 # Account for spin-polarized calculations 

162 epsilon = np.sort(np.ravel(epsilon)) 

163 return -epsilon[-1] 

164 

165 

166@handle_k(mode="skip") 

167def check_ortho(obj, func, eps=1e-9): 

168 """Check the orthogonality condition for a set of functions. 

169 

170 Args: 

171 obj: Atoms or SCF object. 

172 func: A discretized set of functions. 

173 

174 Keyword Args: 

175 eps: Tolerance for the condition. 

176 

177 Returns: 

178 Orthogonality status for the set of functions. 

179 """ 

180 atoms = obj._atoms 

181 func = np.atleast_3d(func) 

182 

183 # It makes no sense to calculate anything for only one function 

184 if atoms.occ.Nstate == 1: 

185 log.warning("Need at least two functions to check their orthogonality.") 

186 return True 

187 

188 ortho_bool = True 

189 # Check the condition for every combination 

190 # Orthogonality condition: \int func1^* func2 dr = 0 

191 for spin in range(atoms.occ.Nspin): 

192 for i in range(atoms.occ.Nstate): 

193 for j in range(i + 1, atoms.occ.Nstate): 

194 res = atoms.dV * np.sum(func[spin, :, i].conj() * func[spin, :, j]) 

195 tmp_bool = abs(res) < eps 

196 ortho_bool *= tmp_bool 

197 log.debug(f"Function {i} and {j}:\nValue: {res:.7f}\nOrthogonal: {tmp_bool}") 

198 log.info(f"Orthogonal: {ortho_bool}") 

199 return ortho_bool 

200 

201 

202@handle_k(mode="skip") 

203def check_norm(obj, func, eps=1e-9): 

204 """Check the normalization condition for a set of functions. 

205 

206 Args: 

207 obj: Atoms or SCF object. 

208 func: A discretized set of functions. 

209 

210 Keyword Args: 

211 eps: Tolerance for the condition. 

212 

213 Returns: 

214 Normalization status for the set of functions. 

215 """ 

216 atoms = obj._atoms 

217 func = np.atleast_3d(func) 

218 

219 norm_bool = True 

220 # Check the condition for every function 

221 # Normality condition: \int func^* func dr = 1 

222 for spin in range(atoms.occ.Nspin): 

223 for i in range(atoms.occ.Nstate): 

224 res = atoms.dV * np.sum(func[spin, :, i].conj() * func[spin, :, i]) 

225 tmp_bool = abs(1 - res) < eps 

226 norm_bool *= tmp_bool 

227 log.debug(f"Function {i}:\nValue: {res:.7f}\nNormalized: {tmp_bool}") 

228 log.info(f"Normalized: {norm_bool}") 

229 return norm_bool 

230 

231 

232@handle_k(mode="skip") 

233def check_orthonorm(obj, func, eps=1e-9): 

234 """Check the orthonormality conditions for a set of functions. 

235 

236 Args: 

237 obj: Atoms or SCF object. 

238 func: A discretized set of functions. 

239 

240 Keyword Args: 

241 eps: Tolerance for the condition. 

242 

243 Returns: 

244 Orthonormality status for the set of functions. 

245 """ 

246 atoms = obj._atoms 

247 ortho_bool = check_ortho(atoms, func, eps) 

248 norm_bool = check_norm(atoms, func, eps) 

249 log.info(f"Orthonormal: {ortho_bool * norm_bool}") 

250 return ortho_bool * norm_bool 

251 

252 

253def get_isovalue(n, percent=85): 

254 """Find an isovalue that contains a percentage of the electronic density. 

255 

256 Reference: J. Chem. Phys. 158, 164102. 

257 

258 Args: 

259 n: Real-space electronic density. 

260 

261 Keyword Args: 

262 percent: Amount of density that should be contained. 

263 

264 Returns: 

265 Isovalue that contains the specified percentage of the density. 

266 """ 

267 

268 def deviation(isovalue): 

269 """Wrapper function for finding the isovalue by minimization.""" 

270 n_mask = np.sum(n[n > isovalue]) 

271 return abs(percent - (n_mask / n_ref) * 100) 

272 

273 # Integrated density 

274 n_ref = np.sum(n) 

275 # Finding the isovalue is an optimization problem, minimizing the deviation above 

276 # The problem is bound by zero (no density) and the maximum value in n 

277 res = minimize_scalar(deviation, bounds=(0, np.max(n)), method="bounded") 

278 return res.x 

279 

280 

281def get_tautf(scf): 

282 """Calculate the Thomas-Fermi kinetic energy densities per spin. 

283 

284 Reference: Phys. Lett. B 63, 395. 

285 

286 Args: 

287 scf: SCF object. 

288 

289 Returns: 

290 Real-space Thomas-Fermi kinetic energy density. 

291 """ 

292 atoms = scf.atoms 

293 # Use the definition with a division by two 

294 tautf = 3 / 10 * (atoms.occ.Nspin * 3 * np.pi**2) ** (2 / 3) * scf.n_spin ** (5 / 3) 

295 

296 log.debug(f"Calculated Ekin: {scf.energies.Ekin:.6f} Eh") 

297 log.debug(f"Integrated tautf: {np.sum(tautf) * atoms.dV:.6f} Eh") 

298 return tautf 

299 

300 

301def get_tauw(scf): 

302 """Calculate the von Weizsaecker kinetic energy densities per spin. 

303 

304 Reference: Z. Phys. 96, 431. 

305 

306 Args: 

307 scf: SCF object. 

308 

309 Returns: 

310 Real-space von Weizsaecker kinetic energy density. 

311 """ 

312 atoms = scf.atoms 

313 if scf.dn_spin is None: 

314 dn_spin = get_grad_field(atoms, scf.n_spin) 

315 else: 

316 dn_spin = scf.dn_spin 

317 dn2 = norm(dn_spin, axis=2) ** 2 

318 # Use the definition with a division by two 

319 tauw = dn2 / (8 * scf.n_spin) 

320 

321 # For one- and two-electron systems the integrated KED has to be the same as the calculated KE 

322 log.debug(f"Calculated Ekin: {scf.energies.Ekin:.6f} Eh") 

323 log.debug(f"Integrated tauw: {np.sum(tauw) * atoms.dV:.6f} Eh") 

324 return tauw 

325 

326 

327def get_elf(scf): 

328 """Calculate the electron localization function. 

329 

330 Reference: J. Chem. Phys. 92, 5397. 

331 

332 Args: 

333 scf: SCF object. 

334 

335 Returns: 

336 Real-space electron localization function. 

337 """ 

338 D = get_tau(scf.atoms, scf.Y) - get_tauw(scf) 

339 D0 = get_tautf(scf) 

340 X = D / D0 

341 return 1 / (1 + X**2) 

342 

343 

344def get_reduced_gradient(scf, eps=0): 

345 """Calculate the reduced density gradient s. 

346 

347 Reference: Phys. Rev. Lett. 77, 3865. 

348 

349 Args: 

350 scf: SCF object. 

351 

352 Kwargs: 

353 eps: Threshold of the density where s should be truncated. 

354 

355 Returns: 

356 Real-space reduced density gradient. 

357 """ 

358 atoms = scf.atoms 

359 if scf.dn_spin is None: 

360 dn_spin = get_grad_field(atoms, scf.n_spin) 

361 else: 

362 dn_spin = scf.dn_spin 

363 norm_dn = norm(np.sum(dn_spin, axis=0), axis=1) 

364 

365 kf = (3 * np.pi**2 * scf.n) ** (1 / 3) 

366 with np.errstate(divide="ignore", invalid="ignore"): 

367 s = norm_dn / (2 * kf * scf.n) 

368 s[scf.n < eps] = 0 

369 return s 

370 

371 

372def get_spin_squared(scf): 

373 """Calculate the expectation value of the squared spin operator <S^2>. 

374 

375 Reference: Appl. Phys. Express 12, 115506. 

376 

377 Args: 

378 scf: SCF object. 

379 

380 Returns: 

381 The DFT value for <S^2>. 

382 """ 

383 atoms = scf.atoms 

384 # <S^2> for a restricted calculation is always zero 

385 if not atoms.unrestricted: 

386 return 0 

387 

388 rhoXr = scf.n_spin[0] - scf.n_spin[1] 

389 rhoXr[rhoXr < 0] = 0 

390 rhoX = np.sum(rhoXr) * atoms.dV 

391 SX = 0.5 * (np.sum(scf.n_spin[0]) - np.sum(scf.n_spin[1])) * atoms.dV 

392 return SX * (SX + 1) + rhoX 

393 

394 

395def get_multiplicity(scf): 

396 """Calculate the multiplicity from <S^2>. 

397 

398 Args: 

399 scf: SCF object. 

400 

401 Returns: 

402 Multiplicity 2S+1. 

403 """ 

404 S2 = get_spin_squared(scf) 

405 # <S^2> = S(S+1) = S^2+S+0.25-0.25 = (S+0.5)^2-0.25 => S = sqrt(<S^2>+0.25)-0.5 

406 S = np.sqrt(S2 + 0.25) - 0.5 

407 return 2 * S + 1 

408 

409 

410def get_magnetization(scf): 

411 """Calculate the total magnetization M. 

412 

413 Args: 

414 scf: SCF object. 

415 

416 Returns: 

417 Total magnetization. 

418 """ 

419 # For a spin paired calculation the total magnetization is just zero 

420 if not scf.atoms.unrestricted: 

421 return 0 

422 

423 return np.sum(scf.n_spin[0] - scf.n_spin[1]) / np.sum(scf.n) 

424 

425 

426def get_bandgap(scf): 

427 """Calculate the band gap. 

428 

429 Args: 

430 scf: SCF object. 

431 

432 Returns: 

433 Band gap energy. 

434 """ 

435 e_occ = get_epsilon(scf, scf.W, **scf._precomputed) 

436 

437 if scf.Z is None: 

438 log.warning("The SCF object has no unoccupied energies, can't calculate band gap.") 

439 return 0 

440 

441 e_unocc = get_epsilon_unocc(scf, scf.W, scf.Z, **scf._precomputed) 

442 return np.min(e_unocc) - np.max(e_occ) 

443 

444 

445def get_Efermi(obj, epsilon=None): 

446 """Calculate the Fermi energy. 

447 

448 Reference: Phys. Rev. B 107, 195122. 

449 

450 Args: 

451 obj: SCF or Occupations object. 

452 

453 Keyword Args: 

454 epsilon: Eigenenergies. 

455 

456 Returns: 

457 Fermi energy. 

458 """ 

459 # Handle the obj argument 

460 if hasattr(obj, "smearing"): 

461 if epsilon is None: 

462 log.error("When passing an Occupations object the eigenenergies have to be given.") 

463 occ = obj 

464 else: 

465 occ = obj.atoms.occ 

466 

467 # Calculate the eigenenergies if necessary 

468 if epsilon is None: 

469 e_occ = get_epsilon(obj, obj.W, **obj._precomputed) 

470 else: 

471 e_occ = epsilon 

472 

473 def electron_root(Efermi): 

474 """Number of electrons by Fermi distribution minus the actual number of electrons.""" 

475 occ_sum = 0 

476 for ik in range(occ.Nk): 

477 occ_sum += occ.wk[ik] * np.sum(fermi_distribution(e_occ[ik], Efermi, occ.smearing)) 

478 return occ_sum * 2 / occ.Nspin - occ.Nelec 

479 

480 # For smeared systems we have to find the root of an objective function 

481 if occ.smearing > 0: 

482 return root_scalar(electron_root, bracket=(np.min(e_occ), np.max(e_occ))).root 

483 

484 if obj.Z is None: 

485 log.warning("The SCF object has no unoccupied energies, return the maximum energy instead.") 

486 return np.max(e_occ) 

487 

488 e_unocc = get_epsilon_unocc(obj, obj.W, obj.Z, **obj._precomputed) 

489 return np.max(e_occ) + (np.min(e_unocc) - np.max(e_occ)) / 2 

490 

491 

492def fermi_distribution(E, mu, kbT): 

493 """Calculate the Fermi distribution. 

494 

495 Reference: https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics 

496 

497 Args: 

498 E: State energy. 

499 mu: Chemical energy or Fermi energy. 

500 kbT: Thermic energy or smearing width. 

501 

502 Returns: 

503 Fermi distribution. 

504 """ 

505 x = (E - mu) / kbT 

506 with np.errstate(over="ignore"): 

507 return 1 / (np.exp(x) + 1) 

508 

509 

510def electronic_entropy(E, mu, kbT): 

511 """Calculate the electronic entropic energy. 

512 

513 Reference: J. Phys. Condens. Matter 1, 689. 

514 

515 Args: 

516 E: State energy. 

517 mu: Chemical energy or Fermi energy. 

518 kbT: Thermic energy or smearing width. 

519 

520 Returns: 

521 Electronic entropic energy. 

522 """ 

523 # Condition taken from: https://gitlab.com/QEF/q-e/-/blob/master/Modules/w1gauss.f90 

524 if abs((E - mu) / kbT) > 36: 

525 return 0 

526 f = fermi_distribution(E, mu, kbT) 

527 return f * np.log(f) + (1 - f) * np.log(1 - f) 

528 

529 

530def get_dos(epsilon, wk, spin=0, npts=500, width=0.1): 

531 """Calculate the total density of states. 

532 

533 Reference: https://gitlab.com/gpaw/gpaw/-/blob/master/gpaw/calculator.py 

534 

535 Args: 

536 epsilon: Eigenenergies. 

537 wk: Chemical energy or Fermi energy. 

538 

539 Keyword Args: 

540 spin: Spin channel. 

541 npts: Number of energy discretizations. 

542 width: Gaussian width. 

543 

544 Returns: 

545 Eigenenergies and DOS. 

546 """ 

547 

548 def delta(x, x0, width): 

549 """Gaussian of given width centered at x0.""" 

550 return np.exp(-(((x - x0) / width) ** 2)) / (np.sqrt(np.pi) * width) 

551 

552 energies = epsilon[:, spin].flatten() 

553 emin = np.min(energies) - 5 * width 

554 emax = np.max(energies) + 5 * width 

555 e = np.linspace(emin, emax, npts) 

556 dos_e = np.zeros(npts) 

557 for e0, w in zip(energies, wk): 

558 dos_e += w * delta(e, e0, width) 

559 return e, dos_e